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The following is a well known result of algebraic number theory [1] or [2].

Theorem (Dirichlet). Suppose Q[α] is a finite degree extension field over the field Q of

rational numbers and R is the integral closure in Q[α] of the ring Z of integers. Let r and

2s be the numbers of real and nonreal embeddings, respectively, of Q[α] into the field of

complex numbers. Then U(R), the group of units of R, can be written as a direct product

U(R) ∼= G×H where G is a finite group and H is a free abelian group of rank r + s− 1.

One peculiarity of the above result is that while it appears to be entirely algebraic, it

seems that all known proofs involve some analysis. In fact, there does not seem to exist an

entirely algebraic proof of the weaker conclusion that U(R) has finite rank. Following this

same line of questioning, a friend of the author recently posed the following problem.

Conjecture. Let R be an integral domain with field of fractions K and suppose that

U(R), the unit group of R, has finite rank. Suppose that F is a finite degree extension field

over K and that S is the integral closure in F of R. Then U(S), the unit group of S, has

finite rank.

20



The purpose of this note is to give a counterexample to the above conjecture, thus

illustrating the difficulty of giving an algebraic proof of Dirichlet’s theorem.

Example. Let Z be the ring of integers. We will define an infinite sequence of rings as

follows:

R0 = Z , R1 = R0[x1,
√
2x1 + 3,

√
3x1 + 5] ,

and for i ≥ 1,

Ri = Ri−1[xi,
√
2xi + 3,

√
3xi + 5] .

Now, let

R∞ =
∞⋃

i=1

Ri and let S = R∞[
√
2,
√
3] .

We make two claims.

Claim 1. U(R∞) = {1,−1}.

Proof. Suppose not. Then U(Rt) 6= {1,−1} for some t ≥ 1. Choose t to be minimal

with respect to this property and let u1 ∈ U(Rt) with u1 /∈ {1,−1}. Then we can write

u1 = f + g
√
2xt + 3 + h

√
3xt + 5 + l

√
2xt + 3

√
3xt + 5

with f , g, h, l ∈ Rt−1[xt]. We are then led naturally to define several conjugates of u1 as
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follows:

u1 = f + g
√
2xt + 3 + h

√
3xt + 5 + l

√
2xt + 3

√
3xt + 5

u2 = f − g
√
2xt + 3− h

√
3xt + 5 + l

√
2xt + 3

√
3xt + 5

u3 = f − g
√
2xt + 3 + h

√
3xt + 5− l

√
2xt + 3

√
3xt + 5

u4 = f + g
√
2xt + 3− h

√
3xt + 5− l

√
2xt + 3

√
3xt + 5

Clearly, ui ∈ U(Rt) and ui /∈ {1,−1} for each i. Now, let u∗ = u1u2u3u4. Then u∗ ∈ U(Rt)

and tedious computation yields

u∗ = (f2 − g2(2xt +3)−h2(3xt +5)+ l2(2xt +3)(3xt +5))2 − 4(fl− gh)2(2xt +3)(3xt +5)

Note that u∗ ∈ Rt−1[xt]. Since each ui ∈ U(Rt) then u−1

i
∈ U(Rt) for each i and a

similar computation to that done above will yield u−1
∗

∈ Rt−1[xt]. Since Rt−1 is a domain

and u∗ is a unit in Rt−1[xt] then the degree of u∗ as a polynomial in xt must be zero. Thus,

u∗ ∈ Rt−1 and then by the minimality of t we must have either u∗ = 1 or u∗ = −1. We

now define

φ = f2 − g2(2xt + 3)− h2(3xt + 5) + l2(2xt + 3)(3xt + 5)

and

ψ = 2(fl − gh) .
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Then

u∗ = φ2 − ψ2(2xt + 3)(3xt + 5)

with

φ, ψ ∈ Rt−1[xt] .

We now have two cases to consider. Either ψ = 0 or ψ 6= 0. We will see that both

cases lead to contradictions.

Suppose ψ = 0. Then either φ = 1 or φ = −1 and so

f2 + l2(2xt + 3)(3xt + 5) = g2(2xt + 3) + h2(3xt + 5) + a

where

a ∈ {1,−1} .

By comparing degrees of the polynomials in xt on the right and on the left hand sides of

this equation, we see that f2 = 1 and g = h = l = 0. This implies that u1 = 1 which is a

contradiction.

Suppose ψ 6= 0. Since u∗ has degree zero in xt, then φ
2 and ψ2(2xt + 3)(3xt + 5) have

the same degree in xt. Let 2n be this degree. Then we can write φ = φnx
n
t + · · · + φ0

and ψ = ψn−1x
n−1

t + · · · + ψ0 where each φi and ψi is in Rt−1. Then φn/ψn−1 =
√
6

is in the field of fractions of Rt−1. Let Ft−1 and K be the fields of fractions of Rt−1

and Z[x1, x2, . . . , xt−1], respectively. Since Ft−1 is the composition of 2t − 2 quadratic
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extensions of K, the Galois group of Ft−1 over K is an elementary abelian 2-group of order

22t−2. Such a group contains 22t−2 − 1 maximal subgroups and so Ft−1 contains exactly

22t−2−1 quadratic extensions ofK. We can construct 22t−2−1 such extensions by adjoining

to K expressions of the form

t−1∏

i=1

(
√
2xi + 3)di(

√
3xi + 5)ei

where di, ei = 0 or 1 for each i. Clearly, none of these extensions is equal to K[
√
6]. Thus,

√
6 /∈ Ft−1 and we have reached a contradiction.

Since neither ψ = 0 nor ψ 6= 0 is possible, we conclude that U(R∞) = {1,−1}.

Claim 2. U(S) has infinite rank.

Proof. The equation

(
√
2
√
3xi + 5 +

√
3
√
2xi + 3)(

√
2
√
3xi + 5−

√
3
√
2xi + 3) = 1

demonstrates that ui = (
√
2
√
3xi + 5+

√
3
√
2xi + 3) is a unit in S for each i. Then the set

{ui|i ≥ 1} generates a group of units in S with infinite rank. Thus U(S) has infinite rank.
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