CONSECUTIVE COMPOSITE VALUES OF A QUADRATIC POLYNOMIAL

Don Redmond
Southern Illinois University

Let a, b, and c be integers such that $b^{2}-4 a c$ is not a perfect square. We are interested in finding sequences of integers n such that $a n^{2}+b n+c$ is composite. Of course, if $b^{2}-4 a c$ is a perfect square, then $a n^{2}+b n+c$ is always composite. We follow along the lines of Garrison in [1].

Let $\mathcal{P}=\left\{p_{t}\right\}_{t=0}^{+\infty}$ be the sequence of primes such that $p_{0}=2, p_{t}<p_{t+1}$ and for all $p \in \mathcal{P}\left(\left(b^{2}-4 a c\right) / p\right)=+1$, where (here and below) (m / p) denotes the Legendre symbol. Then \mathcal{P} contains the prime divisors of all the $a n^{2}+b n+c$. Let

$$
P(t)=\prod_{k=0}^{t} p_{k}
$$

and let

$$
C(t)=\left\{n:\left(a n^{2}+b n+c, P(t)\right)>1\right\} .
$$

For $i=1$ and 2 let $a_{i k}$ be the solutions to $a n^{2}+b n+c \equiv 0\left(\bmod p_{k}\right)$ and let

$$
S(t)=\left\{x: x \not \equiv 1 \quad(\bmod 2) \text { and } x \not \equiv a_{i k} \quad\left(\bmod p_{n}\right), h=1, \ldots, t\right\}
$$

Then we see that $\left(a n^{2}+b n+c, P(t)\right)=1$ if and only if $n \in S(t)$. Finally, by the Chinese Remainder Theorem, any complete residue system modulo $P(t)$ contains

$$
Q(t)=\prod_{k=1}^{t}\left(p_{k}-2\right)
$$

solutions of $S(t)$.

Lemma 1. Let m be a fixed squarefree integer. Then there exists a constant A such that, as $x \rightarrow+\infty$,

$$
\sum_{\substack{p \leq x \\\left(\frac{m}{p}\right)=+1}} \frac{1}{p}=\frac{1}{2} \log \log x+A+O\left(\frac{1}{\log x}\right)
$$

Proof. Now m is a quadratic residue of exactly those primes in certain residue classes modulo $4 m$, in fact in exactly half of the $\phi(4 m)$ residue classes modulo $4 m$ that contain an infinitude of primes. Say these residue classes are

$$
l_{1}, \ldots, l_{\phi(4 m) / 2}
$$

Then

$$
\sum_{\substack{p \leq x \\\left(\frac{m}{p}\right)=+1}} \frac{1}{p}=\sum_{j=1}^{\phi(4 m) / 2} \sum_{\substack{p \leq x \\ p \equiv l_{j}}} \frac{1}{p} .
$$

By a result of Mertens [2, p. 62], we have, as $x \rightarrow+\infty$,

$$
\sum_{\substack{p \leq x \\ p \equiv l_{j}}} \frac{1}{p}=\frac{1}{\phi(4 m)} \log \log x+\frac{c\left(m, l_{j}\right)}{\phi(4 m)}+O\left(\frac{1}{\log x}\right)
$$

where $c\left(m, l_{j}\right)$ is a certain constant. Thus we may take

$$
A=\frac{1}{\phi(4 m)} \sum_{j=1}^{\phi(4 m) / 2} c\left(m, l_{j}\right)
$$

which proves the lemma.

One can show, from Mertens' paper that

$$
A=\frac{1}{2}\left\{\gamma-H-\sum_{p \mid 4 m} \frac{1}{p}\right\}+\sum_{p} \frac{(m / p)}{p}
$$

where γ is Euler's constant and $H=0.31571845205$.

Lemma 2. There is a constant λ such that, as $t \rightarrow+\infty$,

$$
\prod_{k=1}^{t} \frac{p_{k}}{p_{k}-2} \sim \lambda \log p_{t}
$$

$\underline{\text { Proof. If } p \in \mathcal{P} \text { and }}$

$$
s(p)=-\log \left(1-\frac{2}{p}\right)-\frac{2}{p}=\sum_{k=2}^{+\infty} \frac{2^{k}}{k p^{k}}
$$

then

$$
2 / p^{2}<s(p)<(1 / 2)\left(2^{2} / p^{2}+2^{3} / p^{3}+\cdots\right)=2 / p(p-2)
$$

Thus for $p \in \mathcal{P}$ we have that $s(p)>0$. Also there exists a positive constant B such that

$$
\sum_{k=1}^{+\infty} s\left(p_{k}\right)=B
$$

and a function $\epsilon(t)$ such that $\lim _{t \rightarrow 0} \epsilon(t)=0$ and

$$
\sum_{k=1}^{t} s\left(p_{k}\right)=B-\epsilon(t)
$$

Thus

$$
\sum_{k=1}^{t} \log \frac{p_{k}}{p_{k}-2}=\sum_{k=1}^{t} \frac{2}{p_{k}}+B-\epsilon(t)
$$

If we let m denote the squarefree kernel of $\left|b^{2}-4 a c\right|$, then we know that the elements of \mathcal{P}, except $p_{0}=2$, lie in $\phi(4 m) / 2$ residue classes modulo $4 m$. Thus, by Lemma 1 ,

$$
\sum_{k=1}^{t} \frac{2}{p_{k}}=\log \log p_{t}+2 A+O\left(\frac{1}{\log p_{t}}\right)
$$

and so

$$
\begin{aligned}
\prod_{k=1}^{t} \frac{p_{k}}{p_{k}-2} & =\exp \left(\sum_{k=1}^{t} \frac{2}{p_{k}}+B-\epsilon(t)\right) \\
& =\left(\log p_{t}\right) \exp \left\{2 A+B-\epsilon(t)+O\left(1 / \log p_{t}\right)\right\}
\end{aligned}
$$

If we let $\lambda=\exp (2 A+B)$, then the result follows and completes the proof.

Since the values of A and B depend on m we cannot, in general, give estimates of their values. In the two examples below we will compute the value of λ.

Note that a corollary of Lemma 2 is that

$$
P(t) / Q(t) \sim 2 \lambda \log p_{t}
$$

as $t \rightarrow+\infty$.

We now state and prove our main result, which states that we can find arbitrarily long sequences of consecutive integers such that $a n^{2}+b n+c$ is composite.
 large $p_{t} \in \mathcal{P}$ there exists an integer X such that $X+h$ is not a solution of $S(t)$ for $h=1,2, \ldots,\left[(1-\epsilon) \lambda p_{t}\right]$ and $p_{t} \leq X \leq P(t)-p_{t}$.

Proof. Choose δ so that $0<\delta<\min \left(\frac{1}{2}(1-\sqrt{1-\epsilon}), \frac{3}{14}\right)$. Now choose $p_{t} \in \mathcal{P}$ large enough so that
i)

$$
(1-2 \delta / 3) \frac{x}{2 \log x} \leq \sum_{l} \pi(x, 4 m, l) \leq(1+2 \delta / 3) \frac{x}{2 \log x}
$$

for all $x>\delta p_{t}$, where (here and below) the sum over l denotes a sum over those residue classes modulo $4 m$ that contains the primes in \mathcal{P},

$$
\begin{equation*}
(1-2 \delta / 3) 2 \lambda \log p_{s}<P(s) / Q(s)<(1+2 \delta / 3) 2 \lambda \log p_{s} \tag{ii}
\end{equation*}
$$

for all $p_{s}<\delta p_{t}$ and
iii)

$$
\log \left(\delta p_{t}\right)>(1-2 \delta / 3) \log p_{t}
$$

(Note that iii) implies that $p_{t}>\delta^{-3 / 2 \delta}$.) Finally, let p_{r} be the least prime in \mathcal{P} greater than p_{t}.

If y is a positive integer, let $N(y)$ be the number of solutions of $S(r)$ in $\left(y, y+(1-\epsilon) \lambda p_{t}\right]$.
Thus

$$
\sum_{y=1}^{P(r)} N(y)=\left[(1-\epsilon) \lambda p_{t}\right] Q(r)
$$

since each of the $Q(r)$ solutions in $S(r)$ is counted exactly $\left[(1-\epsilon) \lambda p_{t}\right]$ times on the left. Thus, there exists a positive integer x such that $x \leq P(r)$ and

$$
\begin{aligned}
N(x) & \leq(1-\epsilon) \lambda p_{t} Q(r) / P(r) \\
& <\frac{(1-2 \delta)^{2} \lambda p_{t}}{(1-2 \delta / 3) 2 \lambda \log p_{t}} \\
& <(1-2 \delta) p_{t} /\left(2 \log p_{t}\right)
\end{aligned}
$$

where we have used ii) and the condition that $\delta<(1-\sqrt{1-\epsilon}) / 2$. Also, by i), iii) and the condition that $\delta<\frac{3}{14}$, we see that the number of primes in \mathcal{P} between p_{r} and p_{t} is

$$
\begin{aligned}
\sum_{l}\left\{\pi\left(p_{t}, 4 m, l\right)-\pi\left(p_{r}, 4 m, l\right)\right\} & >\frac{(1-2 \delta / 3) p_{t}}{2 \log p_{t}}-\frac{(1+2 \delta / 3) \delta p_{t}}{2 \log \left(\delta p_{t}\right)} \\
& >\frac{(1-2 \delta / 3) p_{t}}{2 \log p_{t}}-\frac{(1+2 \delta / 3) \delta p_{t}}{(1-2 \delta / 3) 2 \log p_{t}} \\
& >(1-2 \delta) p_{t} /\left(2 \log p_{t}\right) \\
& >N(x)
\end{aligned}
$$

Now let $x+h_{1}, \ldots, x+h_{N(x)}$ be the solution of $S(r)$ in the interval $(x, x+(1-$ є) $\left.\lambda p_{t}\right]$. By the Chinese Remainder Theorem there exists a positive integer X such that $X \leq P(t), X \equiv x \quad(\bmod P(r)), X \equiv a_{k}-h_{k-r} \quad\left(\bmod p_{k}\right)$, for $k=r+1, \ldots, r+N(r)$, and $X \equiv 0 \quad\left(\bmod p_{k}\right)$, for $k=r+N(x)+1, \ldots, t$. This X satisfies the conditions of the theorem except possibly when X might be equal to $P(t)$. If this is the case we then use the positive integer X^{\prime}, where $X^{\prime} \equiv X \equiv 0(\bmod P(t-1))$ and $X^{\prime} \equiv 1 \quad\left(\bmod p_{t}\right)$ with $P(t-1) \leq x^{\prime} \leq P(t)$. This completes the proof of the theorem.

We now give two examples of the theorem. We will take $\epsilon=\frac{1}{2}$ in both examples. This forces a certain inequality on δ in the proof of the theorem, namely $\delta<.146446609$. This, in turn, forces $p_{t}>3.6 \cdot 10^{8}$. Thus, our sequences of composites are long, but reasonably far out. If we choose ϵ close to 1 , which would give us a short interval, we can lower the lower bound on p_{t} to around 50000 .

Example 1. Let $a=1, b=0, c=1$, that is, we take as our quadratic polynomial $n^{2}+1$. Here $b^{2}-4 a c=-4$ and $m=1$. Also \mathcal{P} consists of those primes p such that $\left(-\frac{4}{p}\right)=+1$, that is, those primes for which -1 is a quadratic residue. As is well known, these are the primes of the form $4 k+1$. In [2, p. 58] we find that $A=-.2867420562$ and Garrison shows in [1] that $.14059<B<.14115$. Thus $.648<\lambda<.649$. Thus, with $\epsilon=\frac{1}{2}$, if p is a prime of the form $4 k+1$ that is sufficiently large, then the interval (p, P), where

$$
P=\prod_{\substack{q \in P \\ q<p}} q,
$$

there is a sequence of consecutive integers, n, of length at least $.324 p$ for which $n^{2}+1$ is composite.
$\underline{\text { Example 2. Here we take as our quadratic polynomial } n^{2}-2 . \text { In this case } b^{2}-4 a c=8 ~}$ and $m=2$. Now $(2 / p)=+1$ if and only if $p \equiv \pm 1 \quad(\bmod 8)$. As a special case of the result of Mertens [2, p. 62] we find that $A=-.6821954894$ and also we find, upon approximating the sum of the $s\left(p_{k}\right)$ that $.0697<B<.0699$. Thus, in this case $.2739<\lambda<.2740$. With the notation as in example 1 we see that if $p \equiv \pm 1 \quad(\bmod 8)$ is sufficiently large, then the interval (p, P) contains a sequence of consecutive integers, n, of length at least $.137 p$ for which $n^{2}-2$ is composite.

References

1. B. Garrison, "Consecutive Integers for which $n^{2}+1$ is Composite," Pac. J. Math., 97 (1981), 93-96.
2. F. Mertens, "Ein Beitrag zur Analytischen Zahlentheorie," J. Reine U. Angew. Math., 78 (1874), 46-62.
