HOMOTOPY EXTENSION THEOREM FOR A FIBER-PRESERVING PIECEWISE LINEAR μ -HOMOTOPY

Tran van Thuong

Missouri Southern State College

<u>Abstract</u>. In this paper, some nice extension properties of a PL R^{∞} -manifold will be investigated. As a consequence, a homotopy extension theorem for a fiber-preserving piecewise linear μ -homotopy will be proved.

1. Introduction and Definitions. R^{∞} -manifolds have been studied by Heisey and Sakai. In 1975, Heisey [2] proved that any R^{∞} -manifold is a countable direct limit of finite dimensional compact metric spaces. In 1981, Heisey [3] introduced the notion of a piecewise linear R^{∞} -structure and he defined the piecewise linear R^{∞} -manifold; then he proved that any separable paracompact piecewise linear R^{∞} -manifold may be regarded as a polyhedron in R^{∞} .

If $f: X \to Y$ is a function, we denote the image of f by f(X). If $A \subset X$, then $f|A: A \to Y$ will denote the restriction of f to A. The symbol $\pi_x: X \times Y \to X$, will represent the projection onto X. Given a homotopy $f: X \times I \to Y$, and $t \in I$, the function $f_t: X \to Y$ is defined by $f_t(x) = f(x, t)$. If X is a space and $\{B_a|a \in A\}$ is a collection of subspaces of X, then X is said to have the <u>weak topology</u> generated by $\{B_a\}$ provided a set $U \subset X$ is open if and only if $U \cap B_a$ is open in B_a for all $a \in A$. Suppose for a sequence of spaces $\{X_n | n \ge 1\}$, X_n is a subspace of X_{n+1} , we define the direct limit of the sequence, denoted dirlim X_n , to be the set $\cup X_n$ with the weak topology generated by the collection $\{X_n\}$. In particular, $R^{\infty} =$ dirlim R^n , as we consider the line $R^1 \subset R^2 \subset \cdots \subset R^n \subset \cdots$. Here, we think of R^{∞} as

$$\{(x_i): \text{ all but finitely many } x_i \text{ are } 0\}$$
,

and identify \mathbb{R}^n with $\mathbb{R}^n \times \{0\} \times \{0\} \times \cdots \subset \mathbb{R}^\infty$. Let *a* be one-point set in \mathbb{R}^n , and *A*, *B* be subsets of \mathbb{R}^n , we say that *aB* is a <u>cone</u> with vertex *a*, and base *B* (or simply that *aB* is a cone) if each point not equal to *a* is expressed uniquely as $\lambda a + \mu b$ with $b \in b$, $\lambda, \mu \ge 0$ and $\lambda + \mu = 1$. A subset $P \subset \mathbb{R}^n$ is called a <u>polyhedron in the sense of Rourke – Sanderson</u> [5] if for every point $x \in P$, there is a cone neighborhood xL, where *L* is compact. ∂L denotes the boundary of *L*. For this and other basic definitions and results from piecewise linear topology, see [5].

Following Heisey [3], we defined: A subset X of R^{∞} is an R^{∞} -<u>polyhedron</u> if for each compact polyhedron C in R^{∞} , $C \cap X$ is a polyhedron in the usual sense of Rourke-Sanderson [5]. A map $f: X \to Y$ between two R^{∞} -polyhedra is an R^{∞} -<u>piecewise linear</u> $(R^{\infty}$ -PL) if for each compact polyhedron $C \subset X$ and any choice of n such that $f(C) \subset Y \cap R^n$, then $f|C: C \to Y \cap R^n$ is PL in the usual sense of Rourke-Sanderson [5]. For the convenience of notation, we will denote R^{∞} -piecewise linear by R^{∞} -PL. An R^{∞} -<u>manifold</u> X is a Hausdorff topological space such that for each $x \in X$, there exists a homeomorphism f_x mapping some open set containing x onto an open set in R^{∞} . A piecewise linear R^{∞} -atlas for a space M is a collection of pairs $\{(U_{\alpha}, \delta_{\alpha})\}$ where $\{U_{\alpha}\}$ is an open cover of M by nonempty sets, $\delta_{\alpha}: U_{\alpha} \to \delta_{\alpha}(U_{\alpha})$ is a homeomorphism onto an open subset of R^{∞} , and where, if $U_{\alpha} \cap U_{\beta} \neq 0$ $\emptyset, \phi_{\beta}\phi_{\alpha}^{-1}: \delta_{\alpha}(U_{\alpha} \cap U_{\beta}) \to \phi_{\beta}(U_{\alpha} \cap U_{\beta})$ is R^{∞} -PL. A piecewise linear R^{∞} -structure for M is a maximal PL \mathbb{R}^{∞} -atlas for M; since any PL \mathbb{R}^{∞} -atlas for the space M is contained in a unique maximal PL R^{∞} -atlas, a PL R^{∞} -atlas for M determines a PL R^{∞} -structure for M. A piecewise linear R^{∞} -manifold (PL R^{∞} -manifold) is a paracompact R^{∞} -manifold with a PL \mathbb{R}^{∞} -structure which is defined by Heisey [3]. By Sakai [6], a PL \mathbb{R}^{∞} -manifold can be regarded as an open set in R^{∞} . An R^{∞} -polyhedron in a PL R^{∞} -manifold is an R^{∞} polyhedron in \mathbb{R}^{∞} as we regard it as an open subset in \mathbb{R}^{∞} . Let Δ_n be an *n*-simplex, Mand N be PL \mathbb{R}^{∞} -manifolds, we define: a map $f: \triangle_n \times M \to \triangle_n \times N$ is fiber – preserving (fp) if $\pi \triangle_n \circ f = \pi \triangle_n$. By Sakai [7], $M = \operatorname{dirlim} M_n$ where each M_n is a compact polyhedral manifold in some $\mathbb{R}^n \subset \mathbb{R}^\infty$, that is, M_n is a compact polyhedron in \mathbb{R}^n and a PL manifold; then we define a map $f: M \to N$ is \mathbb{R}^{∞} -piecewise linear $(\mathbb{R}^{\infty}$ -PL) if $f|M_n$ is piecewise linear in the sense of Rourke-Sanderson. An fp map f from an R^{∞} -polyhedron P in $\triangle_n \times M \rightarrow$ $\Delta_n \times N$ is called R^{∞} -<u>piecewise linear</u> $(R^{\infty}$ -PL) if $\pi_N \circ f : P \to N$ is R^{∞} -PL. Two maps fand $g: M \to N$ are μ -close if given an open cover μ of N, and if for each $y \in M$, there is an open set $U \in \mu$ such that $\{f(y), g(y)\} \subset U$. Given any open cover μ of any space X, a homotopy $H: Y \times I \to X$ is an μ -homotopy if for each element $y \in Y$, the set $H(y \times I)$

is contained in some $U \in \mu$. A homotopy H is <u>stationary</u> on A or relA where $A \subset Y$ if we have $H(y \times I) = \{H(y, 0)\}$ for each $y \in A$. A homotopy $H : \triangle_n \times M \times I \to \triangle_n \times N$ is called R^{∞} -piecewise linear fiber – preserving homotopy if H_0 and H_1 are R^{∞} -PL fp maps where $H_0 : \triangle_n \times M \times 0 \to \triangle_n \times N$, $H_1 : \triangle_n \times M \times 1 \to \triangle_n \times N$ and H_t is an R^{∞} -PL for each $t \in [0, 1]$. Let μ, ν be families of subsets of $X, U \in \mu$, we define:

$$St(U,\nu) = \bigcup \{V | V \in \nu : U \cap V \neq \emptyset\}$$
$$St(\mu,\nu) = \bigcup \{St(U,\nu) : U \in \mu\}.$$

Inductively, we define:

$$St^{n+1}(\mu, \nu) = St(St^{n}(\mu, \nu))$$
 for $n > 1$.

 $\mu <^* \nu$ means that $St(\mu, \mu)$ is a refinement of ν . A closed subspace A of a space X is said to have the extension property in X with respect to a space Y, iff every map $f : A \to Y$ can be extended over X. The closed subspace A is said to have the <u>neighborhood extension property in X</u> with respect to Y, iff every map $f : A \to Y$ can be extended over some open subspace U of X which contains A. Here, the open subspace U of X may depend on the given map f.

Let C be any topological class of spaces, by an <u>absolute extensor for the class C</u>, (AE for the class C), we mean a space Y such that every closed subspace A of any space X in the class C has the extension property in X with respect to Y. Similarly, by an <u>absolute neighborhood extensor</u> for the class C (ANE for the class C), we mean a space Y such that every closed subspace A of any space X in the class C has the neighborhood extension property in X with respect to Y.

2. Extension of PL maps.

<u>Proposition 2.1.</u> Let M, N be PL \mathbb{R}^{∞} -manifolds. Let $A \subset B$ be two compact subpolyhedra of $\triangle_n \times N$. Let μ be an open cover of $\triangle_n \times M$ and $g: B \to \triangle_n \times M$ be a fp continuous map where g|A is a fp \mathbb{R}^{∞} -PL map, then f is μ -homotopic to g (fp) rel A.

<u>Proof.</u> By Sakai [6], we may regard M as an open set in \mathbb{R}^{∞} . From compactness of g(B), we have $g(B) \subset \Delta_n \times (M \cap \mathbb{R}^p)$ for some p > 0. Consider a finite subcover of g(B): $\{V_i \times U_i\}_{i=1,2,\ldots,q}$. where V_i is a basis open set in Δ_n , U_i is a basis open set in M and $V_i \times U_i$ is contained in some open set of μ . Since each U_i is a basis open set in \mathbb{R}^{∞} , we may assume that

$$U_j = (-\epsilon_1^j, \epsilon_1^j) \times \cdots \times (-\epsilon_p^j, \epsilon_p^j) \times \cdots$$

For each j > 0, let $\epsilon_{p+j} = \min\{\epsilon_{p+j}^1, \ldots, \epsilon_{p+j}^q\}$. Observe that $M \cap R^p$ is a subset of $(M \cap R^p) \times (-\epsilon_{p+1}, \epsilon_{p+1}) \cdots$. Now let $m = 2(n + \dim B)$ and

$$\epsilon = \min\{\epsilon_{p+1}, \epsilon_{p+2}, \dots, \epsilon_{p+m}\}.$$

Consider $g: B \to \triangle_n \times (M \cap R^p) \subset \triangle_n \times (M \cap R^p) \times (-\epsilon, \epsilon)^m \subset \triangle_n \times M$. Let h be an

 R^{∞} -PL embedding from B into $\partial(-\frac{\epsilon}{2}, \frac{\epsilon}{2})^m$. Let V be an open set containing A so that Cl $V \subset B$, then by Heisey [3] and Henderson [1], there is an R^{∞} -PL map $\Psi : B \to [0, 1]$ so that $\Psi^{-1}(0) = A$ and $\Psi(B \setminus V) = 1$. First, we write $h(x) = (h_1(x), h_2(x), \ldots)$, then we define $f : B \to \triangle_n \times M$ by the following way: we write $f(x) = (f_1(x), f_2(x), \ldots)$ where $f_i(x) = \max\{-\Psi(x), \min\{\Psi(x), h_i(x)\}\}$ for $x \in B$; then f is the desired fp R^{∞} -PL map. Note that by the way we construct the embedding h, we have $\{f(x), g(x)\} \subset V_i \times U_i$ for some $i = 1, 2, 3, \ldots, q$. Therefore, by the convexity of $V_i \times U_i$, we can define a fp R^{∞} -PL homotopy H(x, t) = tf(x) + (1 - t)g(x), and H is the desired homotopy.

<u>Proposition 2.2.</u> Let $f : \triangle_n \times M \to \triangle_n \times N$ be a fp map, M and N are PL R^{∞} manifolds, A a closed R^{∞} -subpolyhedron of $\triangle_N \times M$ and $f|A : A \to \triangle_N \times N$ is a fp R^{∞} -PL map, then there is a fp R^{∞} -PL map $g : \triangle_n \times M \to \triangle_n \times N$ such that g|A = f|A.

<u>Proof.</u> By Heisey [3], we regard M as a closed PL submanifold of R^{∞} . By Sakai [7], we write $M = \operatorname{dirlim} M_n$ where each M_n is a compact polyhedral manifold in some $R^n \subset R^{\infty}$, and $M_n \subset M_{n+1}$. Similarly, write $N = \operatorname{dirlim} N_n$ where each N_n is a compact polyhedral manifold in some $R^n \subset R^{\infty}$. It follows that $\triangle_n \times M = \operatorname{dirlim}(\triangle_n \times M_n)$ and $\triangle_n \times N = \operatorname{dirlim}(\triangle_n \times N_n)$. Let $A_i = A \cap (\triangle_n \times M_i)$ for $i = 1, 2, 3, \ldots$, then A_i is a compact R^{∞} -polyhedron and $A = \operatorname{dirlim} A_i$. Now, we consider $f | \triangle_n \times M_1$ where $f | \triangle_n \times M_1 : \triangle_n \times M_1 \to \triangle_n \times N$ and $f | A_1$ is R^{∞} -PL, we may apply Proposition 2.1 to obtain a fp R^{∞} -PL map $g_1 : \triangle_n \times M_1 \to g(\triangle_n \times M_1) \subset \triangle_n \times N_j$ such that $g_1 | A_1 = f | A_1$. Now, extend g_1 to a fp R^{∞} -PL map \tilde{g}_1 as follows:

$$\tilde{g}_1(x) = f(x)$$
 if $x \in A_2$.

$$=g_1(x)$$
 if $x \in \triangle_n \times M_1$

By Hu [4], there is an extension of \tilde{g}_1 to \tilde{g}_2 where $\tilde{g}_2 : \bigtriangleup_n \times M_2 \to \bigtriangleup_n \times N$ such that $\overline{g}_2|(\bigtriangleup_n \times M_1) \cup A_2 = \tilde{g}_1$. Applying Proposition 2.1 again, we may obtain a fp R^{∞} -PL map $g_2 : \bigtriangleup_n \times M_2 \to g_2(\bigtriangleup_n \times M_2) \subset \bigtriangleup_n \times N_k \subset \bigtriangleup_n \times N$ such that $g_2|(\bigtriangleup_n \times M_1) \cup A_2 = \tilde{g}_1$. Continuing this process, we obtain a family of fp R^{∞} -PL maps $\{g_n\}$ where $g_n : \bigtriangleup_n \times M_n \to$ $\bigtriangleup_n \times N$ such that $g_n|(\bigtriangleup_n \times M_{n-1}) \cup A_n = \tilde{g}_{n-1}$. Therefore $\{g_n\}$ induces a fp R^{∞} -PL map g where $g : \bigtriangleup_n \times M \to \bigtriangleup_n \times N$ such that g|A = f|A.

<u>Proposition 2.3.</u> Let M, N be PL R^{∞} -manifolds, A a closed R^{∞} -polyhedron of M, μ an open cover of N. Let h be a homotopy of M to N such that $h|A \times I : A \times I \to N$, is a μ -homotopy; then there is a PL map $\Psi : M \to [0,1]$ such that $\Psi^{-1}(1) \supset A$ and $\{h(m \times [0, \Psi(m)])\} < \mu$.

<u>Proof.</u> Consider M as an open set in R^{∞} . Now, for each $t \in I$, $x \in A$, we have an open neighborhood V_t of x such that $h(V_t \times W_t) \subset U_x$. But $\{W_t : T \in I\}$ is an open cover of I and I is compact; there are finite numbers $t_1, \ldots, t_n \in I$ such that

$$I = \bigcup_{i=1}^{n} W_{t_i}$$

Now, put

$$V_x = \bigcap_{i=1}^n V_{t_i}$$
, and $W = \bigcup_{a \in A} V_a$,

then $h|W \times I$ is a μ -homotopy. By Heisey [3], there is a PL map $\Psi : M \to I$ such that $\Psi|A = 1$ and $\Psi|M - W = 0$; then Ψ satisfies the conditions of the Proposition.

<u>Theorem (Homotopy Extension Theorem)</u>. Let M and N be PL \mathbb{R}^{∞} -manifolds and μ an open cover of $\triangle_n \times M$. Let A be a closed \mathbb{R}^{∞} -subpolyhedron of $\triangle_n \times N$. Let $h: A \times I \to \triangle_n \times M$ be an \mathbb{R}^{∞} -PL fp μ -homotopy such that $h_0: A \to \triangle_n \times M$, has a fp \mathbb{R}^{∞} -PL extension $f: \triangle_n \times N \to \triangle_n \times M$. Then h extends to $\tilde{h}: \triangle_n \times N \times I \to \triangle_n \times M$ which is an \mathbb{R}^{∞} -PL fp μ -homotopy with $\tilde{h}_0 = f$. Moreover, if Γ is a compact subpolyhedron of \triangle_n and if h is stationary on $A \cap (\Gamma \times N)$, then \tilde{h} can be chosen to be stationary on $\Gamma \times N$.

<u>Proof.</u> Let $\overline{H} : ([\triangle_n \times N \times 0] \cup [A \cup \Gamma \times N]) \times I \to \triangle_n \times M$ be the map defined as follows:

$$\overline{H}(\lambda, x, t) = h(\lambda, x, t) \text{ if } (\lambda, x) \in A$$
$$f(\lambda, x) \text{ if } \lambda \in \Gamma \ .$$
$$f(\lambda, x) \text{ if } t = 0 \ .$$

Observe that R^{∞} is an AE for the countable direct limits of compact (metric) spaces, and M can be embedded in R^{∞} as an open set. It is easy to see that M is ANE for the countable direct limits of compacta. Note that $\triangle_n \times N = \operatorname{dirlim}\{\triangle_n \times N_g\}$ where each N_g is a PL finite dimensional compact submanifold of N_{g+1} and each $\triangle_n \times N_g$ is compact; it follows that M is ANE for the class $\triangle_n \times N$ where N is a PL R^{∞} -manifold. Now we consider $\pi_M \circ \overline{H}|[A \cup \Gamma \times N] \times I : [A \cup \Gamma \times N] \times I \to M$. Since M is ANE for the direct limits of towers of compacta, there is an open set W in $\triangle_n \times N \times I$ containing $[A \cup \Gamma \times N] \times I$ such that $\pi_M \circ \overline{H}$ extends to W. Since I is compact, we may assume that $W = V \times I$ where $V \supset [A \cup \Gamma \times N]$ then $[A \cup \Gamma \times N]$ and $(\triangle_n \times N) \setminus V$ are disjoint closed subsets of the normal space $\triangle_n \times N$. By Urysohn's Lemma, there is a map $g : \triangle_n \times N \to I$ such that: $g(\lambda, x) = 1$ if $(\lambda, x) \in [A \cup \Gamma \times N]$

0 if
$$(\lambda, x) \in (\triangle_n \times N) \setminus V$$
.

Now we extend $\pi_M \circ \overline{H}$ by $H(\lambda, x, t) = \pi_M \circ \overline{H}(\lambda, x, tg(\lambda, x))$. As a consequence of Proposition 2.2, there is an R^{∞} -PL map $G : \bigtriangleup_n \times N \times I \to M$ such that $G|[\bigtriangleup_n \times N \times 0] \cup [A \cup \Gamma \times N] \times I = H$. Now, we define: $\overline{h}(\lambda, x, t) = (\lambda, G(\lambda, x, t))$ for $(\lambda, x, t) \in \bigtriangleup_n \times N \times I$; then \overline{h} is an R^{∞} -PL fp extension of h. Applying Proposition 2.3, there is a PL map $\phi : \bigtriangleup_n \times N \to I$ such that $\phi^{-1}(1) \supset [A \cup \Gamma \times N]$ and the family $\{\overline{h}(z \times [0, \phi(z)] : z \in \bigtriangleup_n \times N\} < \mu$. Now defining $\tilde{h}(\lambda, x, t) = \overline{h}(\lambda, x, t\phi(\lambda, x))$ for $(\lambda, x, t) \in \bigtriangleup_n \times N \times I$; then \tilde{h} is the desired R^{∞} -PL fp μ -homotopy.

References

- D. W. Henderson, "A Simplicial Complex Whose Product with any ARN is a Simplicial Complex," *General Topology and its Applications*, (1973), 81–83.
- R. E. Heisey, "Manifolds Modelled on R[∞] or Bounded Weak Topology," Trans. Amer. Math. Soc., 206 (1975), 295–312.
- R. E. Heisey, "Embedding Piecewise R[∞]-manifolds into R[∞]," Topology Proc., 6 (1981), 317–328.

- 4. S. Hu, Theory of Retract Detroit-Wayne State University Press, 1965.
- 5. C. P. Rourke and B. J. Sanderson, Introduction to Piecewise Linear Topology, Ergebnisse Math, Grenzgebiete, Band 69, Springer-Verlag, NY, 1972.
- K. Sakai, "Each R[∞]-manifold has a Unique Piecewise Linear R[∞]-structure," Proc. Amer. Math. Soc., 90 (1984), 616–618.
- K. Sakai, <u>Studies on Continua and Infinite Dimensional Manifolds</u>, RIMS Kokyuroku 509, Kyoto University, Kyoto, Japan, 51–57.