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Abstract. In this paper, some nice extension properties of a PL R∞-manifold will
be investigated. As a consequence, a homotopy extension theorem for a fiber-preserving
piecewise linear µ-homotopy will be proved.

1. Introduction and Definitions. R∞-manifolds have been studied by Heisey and

Sakai. In 1975, Heisey [2] proved that any R∞-manifold is a countable direct limit of finite

dimensional compact metric spaces. In 1981, Heisey [3] introduced the notion of a piecewise

linear R∞-structure and he defined the piecewise linear R∞-manifold; then he proved that

any separable paracompact piecewise linear R∞-manifold may be regarded as a polyhedron

in R∞.

If f : X → Y is a function, we denote the image of f by f(X). If A ⊂ X , then

f |A : A → Y will denote the restriction of f to A. The symbol πx : X × Y → X , will

represent the projection onto X . Given a homotopy f : X × I → Y , and t ∈ I, the function

ft : X → Y is defined by ft(x) = f(x, t). If X is a space and {Ba|a ∈ A} is a collection of

subspaces of X , then X is said to have the weak topology generated by {Ba} provided a

set U ⊂ X is open if and only if U ∩Ba is open in Ba for all a ∈ A. Suppose for a sequence
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of spaces {Xn|n ≥ 1}, Xn is a subspace of Xn+1, we define the direct limit of the sequence,

denoted dirlim Xn, to be the set ∪Xn with the weak topology generated by the collection

{Xn}. In particular, R∞ = dirlim Rn, as we consider the line R1 ⊂ R2 ⊂ · · · ⊂ Rn ⊂ · · ·.

Here, we think of R∞ as

{(xi) : all but finitely many xi are 0} ,

and identify Rn with Rn×{0}×{0}×· · · ⊂ R∞. Let a be one-point set in Rn, and A, B be

subsets of Rn, we say that aB is a cone with vertex a, and base B (or simply that aB is a

cone) if each point not equal to a is expressed uniquely as λa+ µb with b ∈ b, λ, µ ≥ 0 and

λ+µ = 1. A subset P ⊂ Rn is called a polyhedron in the sense of Rourke− Sanderson [5]

if for every point x ∈ P , there is a cone neighborhood xL, where L is compact. ∂L denotes

the boundary of L. For this and other basic definitions and results from piecewise linear

topology, see [5].

Following Heisey [3], we defined: A subset X of R∞ is an R∞-polyhedron if for each

compact polyhedron C in R∞, C∩X is a polyhedron in the usual sense of Rourke-Sanderson

[5]. A map f : X → Y between two R∞-polyhedra is an R∞-piecewise linear (R∞-PL) if

for each compact polyhedron C ⊂ X and any choice of n such that f(C) ⊂ Y ∩ Rn, then

f |C : C → Y ∩Rn is PL in the usual sense of Rourke-Sanderson [5]. For the convenience of

notation, we will denote R∞-piecewise linear by R∞-PL. An R∞-manifold X is a Hausdorff

topological space such that for each x ∈ X , there exists a homeomorphism fx mapping some
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open set containing x onto an open set in R∞. A piecewise linear R∞-atlas for a space M

is a collection of pairs {(Uα, δα)} where {Uα} is an open cover of M by nonempty sets,

δα : Uα → δα(Uα) is a homeomorphism onto an open subset of R∞, and where, if Uα∩Uβ 6=

∅, φβφ
−1
α : δα(Uα ∩ Uβ) → φβ(Uα ∩ Uβ) is R∞-PL. A piecewise linear R∞-structure for M

is a maximal PL R∞-atlas for M ; since any PL R∞-atlas for the space M is contained

in a unique maximal PL R∞-atlas, a PL R∞-atlas for M determines a PL R∞-structure

for M . A piecewise linear R∞-manifold (PL R∞-manifold) is a paracompact R∞-manifold

with a PL R∞-structure which is defined by Heisey [3]. By Sakai [6], a PL R∞-manifold

can be regarded as an open set in R∞. An R∞-polyhedron in a PL R∞-manifold is an R∞-

polyhedron in R∞ as we regard it as an open subset in R∞. Let △n be an n-simplex, M

and N be PL R∞-manifolds, we define: a map f : △n ×M → △n ×N is fiber− preserving

(fp) if π△n◦f = π△n. By Sakai [7], M = dirlimMn where each Mn is a compact polyhedral

manifold in some Rn ⊂ R∞, that is, Mn is a compact polyhedron in Rn and a PL manifold;

then we define a map f : M → N is R∞-piecewise linear (R∞-PL) if f |Mn is piecewise linear

in the sense of Rourke-Sanderson. An fp map f from an R∞-polyhedron P in △n ×M →

△n ×N is called R∞-piecewise linear (R∞-PL) if πN ◦ f : P → N is R∞-PL. Two maps f

and g : M → N are µ-close if given an open cover µ of N , and if for each y ∈ M , there is

an open set U ∈ µ such that {f(y), g(y)} ⊂ U . Given any open cover µ of any space X , a

homotopy H : Y × I → X is an µ-homotopy if for each element y ∈ Y , the set H(y × I)
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is contained in some U ∈ µ. A homotopy H is stationary on A or relA where A ⊂ Y if we

have H(y × I) = {H(y, 0)} for each y ∈ A. A homotopy H : △n × M × I → △n × N is

called R∞-piecewise linear fiber− preserving homotopy if H0 and H1 are R∞-PL fp maps

where H0 : △n ×M × 0 → △n ×N , H1 : △n ×M × 1 → △n ×N and Ht is an R∞-PL for

each t ∈ [0, 1]. Let µ, ν be families of subsets of X , U ∈ µ, we define:

St(U, ν) =
⋃

{V |V ∈ ν : U ∩ V 6= ∅}.

St(µ, ν) =
⋃

{St(U, ν) : U ∈ µ}.

Inductively, we define:

Stn+1(µ, ν) = St(Stn(µ, ν)) for n > 1.

µ <∗ ν means that St(µ, µ) is a refinement of ν. A closed subspace A of a space X

is said to have the extension property in X with respect to a space Y , iff every map

f : A → Y can be extended over X . The closed subspace A is said to have the

neighborhood extension property in X with respect to Y , iff every map f : A → Y can

be extended over some open subspace U of X which contains A. Here, the open subspace

U of X may depend on the given map f .

Let C be any topological class of spaces, by an absolute extensor for the class C, (AE

for the class C), we mean a space Y such that every closed subspace A of any space
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X in the class C has the extension property in X with respect to Y . Similarly, by an

absolute neighborhood extensor for the class C (ANE for the class C), we mean a space

Y such that every closed subspace A of any space X in the class C has the neighborhood

extension property in X with respect to Y .

2. Extension of PL maps.

Proposition 2.1. Let M , N be PL R∞-manifolds. Let A ⊂ B be two compact sub-

polyhedra of △n × N . Let µ be an open cover of △n ×M and g : B → △n ×M be a fp

continuous map where g|A is a fp R∞-PL map, then f is µ-homotopic to g (fp) rel A.

Proof. By Sakai [6], we may regard M as an open set in R∞. From compactness of

g(B), we have g(B) ⊂ △n × (M ∩ Rp) for some p > 0. Consider a finite subcover of g(B):

{Vi × Ui}i=1,2,...,q. where Vi is a basis open set in △n, Ui is a basis open set in M and

Vi×Ui is contained in some open set of µ. Since each Ui is a basis open set in R∞, we may

assume that

Uj = (−ǫ
j
1
, ǫ

j
1
)× · · · × (−ǫjp, ǫ

j
p)× · · · .

For each j > 0, let ǫp+j = min{ǫ1p+j , . . . , ǫ
q
p+j}. Observe that M ∩ Rp is a subset of

(M ∩Rp)× (−ǫp+1, ǫp+1) · · ·. Now let m = 2(n+ dimB) and

ǫ = min{ǫp+1, ǫp+2, . . . , ǫp+m}.

Consider g : B → △n × (M ∩ Rp) ⊂ △n × (M ∩ Rp) × (−ǫ, ǫ)m ⊂ △n ×M . Let h be an
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R∞-PL embedding from B into ∂(− ǫ
2
, ǫ
2
)m. Let V be an open set containing A so that

Cl V ⊂ B, then by Heisey [3] and Henderson [1], there is an R∞-PL map Ψ : B → [0, 1]

so that Ψ−1(0) = A and Ψ(B\V ) = 1. First, we write h(x) = (h1(x), h2(x), . . .), then we

define f : B → △n × M by the following way: we write f(x) = (f1(x), f2(x), . . .) where

fi(x) = max{−Ψ(x),min{Ψ(x), hi(x)}} for x ∈ B; then f is the desired fp R∞-PL map.

Note that by the way we construct the embedding h, we have {f(x), g(x)} ⊂ Vi × Ui for

some i = 1, 2, 3, . . . , q. Therefore, by the convexity of Vi × Ui, we can define a fp R∞-PL

homotopy H(x, t) = tf(x) + (1− t)g(x), and H is the desired homotopy.

Proposition 2.2. Let f : △n × M → △n × N be a fp map, M and N are PL R∞-

manifolds, A a closed R∞-subpolyhedron of △N × M and f |A : A → △N × N is a fp

R∞-PL map, then there is a fp R∞-PL map g : △n ×M → △n ×N such that g|A = f |A.

Proof. By Heisey [3], we regard M as a closed PL submanifold of R∞. By Sakai

[7], we write M = dirlimMn where each Mn is a compact polyhedral manifold in some

Rn ⊂ R∞, and Mn ⊂ Mn+1. Similarly, write N = dirlimNn where each Nn is a compact

polyhedral manifold in some Rn ⊂ R∞. It follows that △n × M = dirlim(△n × Mn)

and △n × N = dirlim(△n × Nn). Let Ai = A ∩ (△n × Mi) for i = 1, 2, 3, . . ., then Ai

is a compact R∞-polyhedron and A = dirlimAi. Now, we consider f |△n × M1 where

f |△n ×M1 : △n ×M1 → △n × N and f |A1 is R∞-PL, we may apply Proposition 2.1 to

obtain a fp R∞-PL map g1 : △n ×M1 → g(△n ×M1) ⊂ △n ×Nj such that g1|A1 = f |A1.
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Now, extend g1 to a fp R∞-PL map g̃1 as follows:

g̃1(x) = f(x) if x ∈ A2 .

= g1(x) if x ∈ △n ×M1 .

By Hu [4], there is an extension of g̃1 to g̃2 where g̃2 : △n × M2 → △n × N such that

g2|(△n ×M1)∪A2 = g̃1. Applying Proposition 2.1 again, we may obtain a fp R∞-PL map

g2 : △n ×M2 → g2(△n ×M2) ⊂ △n ×Nk ⊂ △n ×N such that g2|(△n ×M1) ∪ A2 = g̃1.

Continuing this process, we obtain a family of fp R∞-PL maps {gn} where gn : △n×Mn →

△n ×N such that gn|(△n ×Mn−1)∪An = g̃n−1. Therefore {gn} induces a fp R∞-PL map

g where g : △n ×M → △n ×N such that g|A = f |A.

Proposition 2.3. Let M , N be PL R∞-manifolds, A a closed R∞-polyhedron of M , µ

an open cover of N . Let h be a homotopy of M to N such that h|A × I : A × I → N ,

is a µ-homotopy; then there is a PL map Ψ : M → [0, 1] such that Ψ−1(1) ⊃ A and

{h(m× [0,Ψ(m)])} < µ.

Proof. Consider M as an open set in R∞. Now, for each t ∈ I, x ∈ A, we have an

open neighborhood Vt of x such that h(Vt ×Wt) ⊂ Ux. But {Wt : T ∈ I} is an open cover

of I and I is compact; there are finite numbers t1, . . . , tn ∈ I such that

I =
n⋃

i=1

Wti .

Now, put

Vx =

n⋂

i=1

Vti , and W =
⋃

a∈A

Va ,
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then h|W × I is a µ-homotopy. By Heisey [3], there is a PL map Ψ : M → I such that

Ψ|A = 1 and Ψ|M −W = 0; then Ψ satisfies the conditions of the Proposition.

Theorem (Homotopy Extension Theorem). Let M and N be PL R∞-manifolds and

µ an open cover of △n × M . Let A be a closed R∞-subpolyhedron of △n × N . Let

h : A × I → △n ×M be an R∞-PL fp µ-homotopy such that h0 : A → △n ×M , has a fp

R∞-PL extension f : △n ×N → △n ×M . Then h extends to h̃ : △n ×N × I → △n ×M

which is an R∞-PL fp µ-homotopy with h̃0 = f . Moreover, if Γ is a compact subpolyhedron

of △n and if h is stationary on A∩ (Γ×N), then h̃ can be chosen to be stationary on Γ×N .

Proof. Let H : ([△n × N × 0] ∪ [A ∪ Γ × N ]) × I → △n ×M be the map defined as

follows:

H(λ, x, t) =h(λ, x, t) if (λ, x) ∈ A

f(λ, x) if λ ∈ Γ .

f(λ, x) if t = 0 .

Observe that R∞ is an AE for the countable direct limits of compact (metric) spaces, and

M can be embedded in R∞ as an open set. It is easy to see that M is ANE for the countable

direct limits of compacta. Note that △n × N = dirlim{△n × Ng} where each Ng is a PL

finite dimensional compact submanifold of Ng+1 and each △n × Ng is compact; it follows

that M is ANE for the class △n × N where N is a PL R∞-manifold. Now we consider
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πM ◦H|[A ∪ Γ × N ]× I : [A ∪ Γ ×N ] × I → M . Since M is ANE for the direct limits of

towers of compacta, there is an open set W in △n ×N × I containing [A∪ Γ×N ]× I such

that πM ◦ H extends to W . Since I is compact, we may assume that W = V × I where

V ⊃ [A∪Γ×N ] then [A∪Γ×N ] and (△n×N)\V are disjoint closed subsets of the normal

space △n ×N . By Urysohn’s Lemma, there is a map g : △n ×N → I such that:

g(λ, x) =1 if (λ, x) ∈ [A ∪ Γ×N ]

0 if (λ, x) ∈ (△n ×N)\V .

Now we extend πM ◦H by H(λ, x, t) = πM ◦H(λ, x, tg(λ, x)). As a consequence of Proposi-

tion 2.2, there is an R∞-PL map G : △n×N × I → M such that G|[△n×N × 0]∪ [A∪Γ×

N ]× I = H . Now, we define: h(λ, x, t) = (λ,G(λ, x, t)) for (λ, x, t) ∈ △n ×N × I; then h is

an R∞-PL fp extension of h. Applying Proposition 2.3, there is a PL map φ : △n ×N → I

such that φ−1(1) ⊃ [A ∪ Γ × N ] and the family {h(z × [0, φ(z)] : z ∈ △n × N} < µ. Now

defining h̃(λ, x, t) = h(λ, x, tφ(λ, x)) for (λ, x, t) ∈ △n×N × I; then h̃ is the desired R∞-PL

fp µ-homotopy.
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