A COUNTER EXAMPLE IN GROUP THEORY

Ramesh Garimella
Northwest Missouri State University

In a first course on basic group theory, one of the standard problems is to show that if $G=\left\{x_{1}, x_{2}, \cdots, x_{n}\right\}$ is an abelian group and n is odd then the product $x_{1} x_{2} \cdots x_{n}=e$, where e is the identity element G. In this short note, we give a counter example to show that the above result is not true if we drop the 'abelianness' of the group. In looking for an example, we do not need to consider a group of order $3,5,7,11,13,17,19$, because these are primes and any group of prime order is cyclic and hence abelian. Also $n=9$ does not work, because it is the square of a prime and hence the group is abelian. Also by fairly standard arguments, one can see that group of order 15 is abelian. Therefore the first possible candidate for a counter example is a group of order 21. Apart from the cyclic group of order 21 , there is a unique non-abelian group of order 21 (refer to p. 112, problem $11(\mathrm{~b})$ of [1]). We show that this unique non-abelian group G of order 21 works as a counter example. As a matter of fact, we find an arrangement $x_{1}, x_{2}, \cdots, x_{20}$ of non-identity elements of G such that the product $x_{1} x_{2} \cdots x_{20}$ is non-identity. Let $a, b \in G$ such that order of a and b be 3 and 7 respectively and e be the identity element of G. Let

$$
G=\left\{e, a, a^{2}, b^{i}, a b^{i}, a^{2} b^{i}: 1 \leq i \leq 6\right\}
$$

Since $a^{-1}=a^{2}$, and $\left\{e, b^{i}, 1 \leq i \leq 6\right\}$ is a normal subgroup of G (by Sylow Theorem), and since $a b \neq b a$, there exists an $i, 2 \leq i \leq 6$, such that $a b a^{2}=b^{i}$.
Now we let,

$$
\begin{array}{llll}
x_{1}=a b^{2}, & x_{5}=a b^{4}, & x_{9}=a b^{6}, & x_{13}=a, \\
x_{2}=a^{2} b^{2}, & x_{6}=a^{2} b^{4}, & x_{10}=a^{2} b^{6}, & x_{14}=a^{2} b, \\
x_{3}=a b^{3}, & x_{7}=a b^{5}, & x_{11}=a^{2}, & x_{15}=b, \\
x_{4}=a^{2} b^{3}, & x_{8}=a^{2} b^{5}, & x_{12}=a b, & x_{16}=b^{2},
\end{array}
$$

Since $a b a^{2}=b^{i}$, the product

$$
\begin{aligned}
x_{1} x_{2} \cdots x_{10} & =b^{2 i+2} b^{3 i+3} \cdots b^{6 i+6} \\
& =b^{i(2+3+\cdots+6)+(2+3+\cdots+6)} \\
& =b^{20 i+20}=b^{20(i+1)} .
\end{aligned}
$$

Also since $a^{3}=e$ and $b^{7}=e$, the product $x_{11} x_{12} \cdots x_{20}=b^{2}$. Hence the product $x_{1} x_{2} \cdots x_{20}=b^{20(i+1)+2}$. Since 7 does not divide $20(i+1)+2$ for $2 \leq i \leq 6$, the product $x_{1} x_{2} \cdots x_{20} \neq e$.

Remark. By Proposition 6.1, p. 97 [2], it can be seen that the value of i in the above argument can only be either 2 or 4 but not both. But this is not relevant in the above.

References

1. I. N. Herstein, Topics in Algebra, John Wiley and Sons, Inc., 1975.
2. T. W. Hungerford, Algebra, Springer-Verlag, New York, 1974.
