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The usual proof of the Heine-Borel Theorem as in [1] and [2], always makes use of

the Bolazano-Weierstrass Theorem and/or Cantor’s Intersection Theorem. But if the un-

derstanding of these theorems exhausts the students’ mathematical knowledge, then an

understanding of the proof is lost.

The following method of proof, which is simpler but written in the same spirit as Ross’s

work in [3], uses only results from the theory of sequences and mathematical induction.

This not only allows us to avoid the use of these “big” theorems, but also strengthens the

students’ understanding of sequences and mathematical induction.

Definition. An n−dimensional open interval I in ℜn is defined by the set

I = {(x1, x2, · · · , xn)|ai < xi < bi; ai, xi, bi ∈ ℜ; 1 ≤ i ≤ n} .

Similarly, an n−dimensional closed interval J in ℜn is defined by the set

J = {(x1, x2, · · · , xn)| ai ≤ xi ≤ bi; ai, xi, bi ∈ ℜ; 1 ≤ i ≤ n} .

Definition. A set O in ℜn is said to be open if for each x in O, there exists an n-

dimensional open interval I such that x ∈ I ⊆ O. A set C in ℜn is closed if ℜn − C is

open.

Remark 1. Every n-dimensional closed interval in ℜn is closed.

Definition. A sequence s in a nonempty set S is a function whose domain is the set of

natural numbers and whose range is a subset of S.

Throughout this paper N is used to denote the set of natural numbers and R(s) is

used to denoted the range of a sequence s. A sequence s is said to be infinite if R(s) is an

infinite set.

Definition. Let s be a sequence in ℜn. A sequence t is called a subsequence of s if there

is an increasing function φ from N to N such that t = s ◦ φ.
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Definition. A set B in ℜn is said to be bounded if there exists an n-dimensional closed

interval J in ℜn such that B ⊆ J . A sequence s in ℜn is bounded if R(s) is bounded.

Definition. A set S in ℜn is said to be compact if for every collection O of open sets

in ℜn such that S ⊆ ∪O, there exists a finite subcollection O∗ of O such that S ⊆ ∪O∗.

Remark 2. A set S is compact if and only if for every collection A of n-dimensional

open intervals with S ⊆ ∪A, there exists a finite subcollection A∗ of A such that S ⊆ ∪A∗.

3. Every compact set in ℜn is closed and bounded.

4. Every closed subset of a compact set in ℜn is compact.

Definition. Let S be a set in ℜn. A point p is a limit point of S if every n-dimensional

open interval containing p contains a point q 6= p of S.

Remark 5. If S is a set in ℜn, then every n-dimensional open interval containing p

contains infinitely many points of S distinct from p.

6. A subset S of ℜn is closed if and only if S contains all its limit points.

First, we shall show that every sequence in a closed interval in ℜ has a convergent

subsequence. Note that the following lemma is an immediate result from the definition of

limit point.

Lemma 1. Suppose s is a sequence in ℜn, and l is a limit point of R(s). Then l is a

limit point of R(s)− F for any finite subset F of R(s).

Lemma 2. Let s be a sequence in ℜn. If l is a limit point of R(s), then some subseqence

of s converges to l.

Proof. Let πi be the projection map from ℜn onto its ith component. Since

n
∏

i=1

(πi(l)− 1, πi(l) + 1)

is an n-dimensional open interval containing l, there exists a point s(n1) in

(R(s)− {l}) ∩

n
∏

i=1

(πi(l)− 1, πi(l) + 1) .
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Assume that there exists a point s(nk) in

(R(s)− {l, s(n1), · · · , s(nk−1)} ∩

n
∏

i=1

(

πi(l)−
1

k
, πi(l) +

1

k

)

such that n1 < n2 < · · · < nk. Now

n
∏

i=1

(

πi(l)−
1

k + 1
, πi(l) +

1

k + 1

)

is an n-dimensional open interval containing I. By Lemmas 1 and 2, there exists a point

s(nk+1) in

(R(s)− {l, s(n1), · · · , s(nk)}) ∩
n
∏

i=1

(

πi(l)−
1

k + 1
, πi(l) +

1

k + 1

)

such that nk+1 > nk. Define φ : N → N by φ(k) = nk. Then the sequence t defined by

t(k) = s ◦ φ(k) is a subseqence of s, and it is clearly convergent.

Definition. Let s be a sequence in ℜ. Then its limit superior is defined by

lim s = inf
n

sup
k≥n

s(k) .

Similarly, its limit inferior is defined by

lim s = sup
n

inf
k≥n

s(k) .

Remark 8. Suppose s is a sequence in ℜ; u and l are real numbers. Then u = lim s if

(a) given ǫ > 0, there is an n ∈ N such that s(k) < u+ ǫ for all k ≥ n, and

(b) given ǫ > 0 and n ∈ N , there is a k ≥ n such that s(k) > u− ǫ.
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Similarly, l = lim s if

(a) given ǫ > 0, there is an n ∈ N such that s(k) > l− ǫ for all k ≥ n and

(b) given ǫ > 0 and n ∈ N , there is a k ≥ n such that s(k) < l + ǫ.

9. lim s = lim s = a if and only if lim s = a.

The following lemma is a special case of an exercise in [4].

Lemma 3. Let s be a bounded infinite sequence in ℜ. Then lim s and lim s are real

numbers and they are limit points of R(s).

Proof. lim s and lim s are real numbers from the definitions. Let u = lim s and let

ǫ be an arbitrary positive real number. Then (u − ǫ, u + ǫ) is an arbitrary 1−dimensional

open interval containing u. From Remark 8, (u− ǫ, u+ ǫ) contains infinitely many elements

of u. Thus u is a limit point of R(s). Similarly, lim s is a limit point of s.

Lemma 4. Every bounded sequence in ℜ has a convergent subsequence.

Proof. Let s be a bounded sequence of real numbers. If R(s) is finite, then there exist

k ∈ N and a ∈ R(s) such that s(n) = a for n ≥ k. Thus s is a convergent sequence. If R(s)

is infinite, then the result follows from Lemmas 3 and 2.

Theorem 1. Every sequence in [a, b] has a convergent subsequence which converges to

a point in [a, b].

Proof. Let s be a sequence in [a, b]. Then s is a bounded sequence in ℜ. According

to Lemma 4, s has a convergent subsequence t. Let l = lim t. If R(t) is finite, then l is a

point in [a, b]. If R(t) is infinite, then l is a limit point of R(s) and hence a limit point of

[a, b]. According to Remark 7, l is a point in [a, b].

Secondly, we shall establish the result that every sequence in an n-dimensional closed

interval has a convergent subsequence by mathematical induction.

Theorem 2. Every sequence in an n-dimensional closed interval J has a convergent

subsequence in J .

Proof. Theorem 1 shows that the result is true when n = 1. Assume that the result is

true for n ≤ k. Let s be a sequence in a (k+1)-dimensional interval J . Since the case R(s)

being finite is quite trivial, we assume that R(s) is infinite. For each i = 1, 2, . . . , k, k + 1,

let πi denote the projection of J onto its ith component [ai, bi]. Let s∗ be the sequence

defined by

s∗(j) = (π1 ◦ s(j), π2 ◦ s(j), · · · , πk ◦ s(j))
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for each j ∈ N . Then s∗ is a sequence in the k-dimensional closed interval

k
∏

i=1

πi(J) .

By the induction hypothesis, there exists an increasing function φ : N → N such that s∗ ◦φ

converges to a point (l1, · · · , lk) in

k
∏

i=1

πi(J) .

Now πk+1 ◦ s ◦ φ is a sequence in πk+1(J). Again, by the induction hypothesis, there exists

an increasing function ψ : N → N such that (πk+1 ◦ s ◦ φ) ◦ ψ converges to a point lk+1 in

πk+1(J). Without loss of generality, let ǫ be an arbitrary positive real number such that

for each i = 1, 2, . . . , k, k + 1,

(li − ǫ, li + ǫ) ⊂ πi(J) .

There exist n1, n2 ∈ N such that

(s∗ ◦ φ) ◦ ψ(n) ∈

k
∏

i=1

(li − ǫ, li + ǫ)

for every n ≥ n1, and

(πk+1 ◦ s ◦ φ) ◦ ψ(n) ∈ (lk+1 − ǫ, lk+1 − ǫ)

for every n ≥ n2. Let m = max{n1, n2}. Then for each n ≥ m,

(s ◦ φ) ◦ ψ(n) = ((s∗ ◦ φ) ◦ ψ(n)), (πk+1 ◦ φ) ◦ ψ(n)) ∈

k+1
∏

i=1

(ai − ǫ, ai + ǫ) .

Thus s ◦ φ ◦ ψ is a convergent subsequence of s in J .
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Thirdly, we shall show that every n-dimensional closed interval in ℜn is compact. Note

that the following theorem is a special case of Theorem 7.4 in [5].

Theorem 3. Every n-dimensional closed interval in ℜn is compact.

Proof. Let J be an n-dimensional interval in ℜn. Suppose for some ǫ > 0, J cannot be

covered by finitely many

{ n
∏

i=1

(πi(x)− ǫ, πi(x) + ǫ)|x ∈ J

}

.

Let t1 be a point in J . Since

n
∏

i=1

(πi(t1)− ǫ, πi(t1) + ǫ)

is not all of J , there exists t2 in J such that

t2 6∈

n
∏

i=1

(πi(t1)− ǫ, πi(t1) + ǫ) .

In general, given t1, t2, . . . , tk, let tk+1 be a point in J such that

tk+1 6∈

k
⋃

j=1

[ n
∏

i=1

(π(tj)− ǫ, πi(tj) + ǫ)

]

.

Let s be a sequence such that for each j ∈ N , s(j) = tj . Then s is a sequence in J which

has no convergent subsequence. This contradicts Theorem 2. Therefore J must be compact

by Remark 3.

Finally, we establish our main result, the Heine-Borel Theorem.

Theorem 4 (Heine-Borel). Let S be a set in ℜn. S is compact if and only if S is closed

and bounded.
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Proof. By Remark 4, it suffices to show that if S is closed and bounded then it is compact.

Since S is bounded in ℜn, there exists an n−dimensional closed interval J such that S ⊆ J .

Since S is closed and J is compact, it follows from Remark 5 that S is compact.
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