## TRIANGLES WITH EQUIVALENT RELATIONS

### BETWEEN THE ANGLES AND BETWEEN THE SIDES

Mogens Esrom Larsen Matematisk Institut, Copenhagen, Denmark

David Singmaster South Bank Polytechnic, London, UK

# PART I

### GEOMETRY

#### 0. Abstract and Introduction.

The simplest examples of equivalent relations between angles and sides for a triangle  $\triangle ABC$  with sides a, b, and c are well known, e.g.,

(1) 
$$\angle A = \angle B \Leftrightarrow a = b$$

and

(2) 
$$\angle A = \angle B + \angle C \Leftrightarrow a^2 = b^2 + c^2 ,$$

because the angle-relation is equivalent to  $\angle A = \frac{\pi}{2}$ .

K. Schwering [7, 8, 9] and J. Heinrichs [3] (see also Dickson [2]) have studied relations of the form  $\angle A = n \angle B$  and  $\angle A = n \angle B + \angle C$  by the help of trigonometric functions and roots of unity. W. W. Willson [12] and R. S. Luthar [4] have considered the case n = 2, and recently J. E. Carroll and K. Yanosko [1] have generalized to the case of n rational. E. A. Maxwell [5, 6] has considered triangles with  $2\angle A = \angle B + \angle C$ . In this paper we present elementary geometric proofs of the following equivalences:

$$(3) \qquad \qquad \angle A = 2\angle B \Leftrightarrow a^2 = b^2 + bc$$

(4) 
$$\angle A = 2\angle B + \angle C \Leftrightarrow a^2 = b^2 + ac$$

(5) 
$$2\angle A = \angle B + \angle C \Leftrightarrow a^2 = b^2 + c^2 - bc$$

(6) 
$$\angle A = 2(\angle B + \angle C) \Leftrightarrow a^2 = b^2 + c^2 + bc$$

(7)  $\angle A = 2(\angle B - \angle C) \Leftrightarrow ba^2 = (b - c)(b + c)^2$ 

Furthermore, we present the formulas for the complete set of integral solutions for each of the types of triangles.

1. All Triangles with  $\angle A = 2 \angle B$ .

In  $\triangle ABC$  with  $\angle A > \angle B$  we draw a line from A to D on a such that  $\angle CAD = \angle B$  as in Fig. 1.

Then  $\triangle ABC \sim \triangle DAC$ , so that

(8) 
$$\frac{b}{a} = \frac{d}{c} = \frac{a-x}{b}$$



$$\angle A = 2\angle B \Leftrightarrow d = x$$

Figure 1.

or the two equalities

$$(9) ad = bc$$

$$ax = a^2 - b^2$$

from which we get the valid formula:

(11) 
$$\frac{x}{d} = \frac{a^2 - b^2}{bc} \; .$$

Hence, we conclude that  $\angle A = 2 \angle B$  iff  $\triangle ADC$  is isosceles or x = d, i.e.,

(12) 
$$\angle A = 2\angle B \Leftrightarrow \angle BAD = \angle B \Leftrightarrow x = d \Leftrightarrow a^2 - b^2 = bc .$$

This proves (3).

2. All Triangles with  $\angle A = 2 \angle B + \angle C$ .

In a triangle with  $\angle A > \angle B + \angle C$  we draw a line from A to D on a such that  $\angle CAD = \angle B$  as in Fig. 2.

Again  $\triangle ABC \sim \triangle DAC$  so that we have (10). Now,

(13) 
$$\angle A = 2\angle B + \angle C \Leftrightarrow \angle A - \angle B = \angle B + \angle C .$$



$$\angle A = 2 \angle B + \angle C \Leftrightarrow x = c$$

Figure 2.

But we have that

(14)  $\angle BAD = \angle A - \angle B$ 

and

$$(15) \qquad \qquad \angle BDA = \angle B + \angle C$$

Hence we have

(16) 
$$\angle A = 2\angle B + \angle C \Leftrightarrow \angle BAD = \angle BDA \Leftrightarrow x = c \Leftrightarrow ac = ax \Leftrightarrow ac = a^2 - b^2$$

This proves (4).

3. All Triangles with  $\angle A = \frac{\pi}{3}$  or  $\angle A = \frac{2\pi}{3}$ .

The angle relations in (5) and (6) are equivalent to the equations  $\angle A = \frac{\pi}{3}$  and  $\angle A = \frac{2\pi}{3}$  respectively. The relations of the sides are, of course, just the cosine relations for these angles. But a closer look proves worthwhile.

Suppose  $\angle A = \frac{\pi}{3}$  and  $\angle C < \angle A < \angle B$ . (Signs of equality gives the trivial case of equilateral triangles, a = b = c.) Then we draw two equilateral triangles with  $\angle A$  of sidelength's respectively c and b as in Fig. 3.



$$\angle A = \angle A' = \frac{\pi}{3}$$
 and  $\angle BDC = \frac{2\pi}{3}$   
Figure 3.

Then we notice the pair of solutions  $\triangle ABC$  and  $\triangle A'BC$  with sides a, b, c and a, b, b-c respectively. Furthermore,  $\triangle DBC$  has  $\angle BDC = \frac{2\pi}{3}$  and sides a, c, b-c.

So, the solutions appear three at a time.

An elementary solution of the cosine relation comes from Pythagoras applied to the triangles  $\triangle ABE$  and  $\triangle BCE$ ; i.e.,

(17) 
$$c^{2} - \left(\frac{c}{2}\right)^{2} = h^{2} = a^{2} - \left(b - \frac{c}{2}\right)^{2}$$

(18) 
$$c^2 = a^2 - b^2 + bc$$

proving (5) from which

(19) 
$$a^{2} = c^{2} + (b - c)^{2} + c(b - c)$$

proving (6).

4. All Triangles with  $\angle A = 2(\angle B - \angle C)$ .

This equation is similar to the previous ones so it is surprising that it is equivalent to a third degree equation in the sides; and no longer surprising it is much harder to prove. We draw in a triangle with  $\angle C < \angle B$  the bisector from A to D on a as in Fig. 4.



 $\angle A = 2(\angle B - \angle C) \Leftrightarrow d = c$ 

Figure 4.

Then  $\angle ADB = \angle C + \frac{1}{2} \angle A$ . Hence the relation is equivalent to  $\triangle DAB$  being isosceles.

(20) 
$$\angle A = 2(\angle B - \angle C) \Leftrightarrow \angle C + \frac{1}{2} \angle A = \angle B \Leftrightarrow c = d$$

But this time we need some further lines for support. We extend AB over A to the point E such that AE = b, and we extend AD over D to the point F, chosen such that the angle  $\angle DCF = \frac{1}{2} \angle A$ , as is shown in Fig. 5.

The first extension gives us the isosceles  $\triangle CAE$ , and hence that  $\angle ACE = \angle CEA = \frac{1}{2} \angle CAB$ . Therefore

$$(21) \qquad \qquad \triangle DAB \sim \triangle CEB$$

The second extension gives us

$$(22) \qquad \qquad \triangle DAB \sim \triangle CAF \sim \triangle DCF$$

The angle relation is thus equivalent to the four similar triangles being simultaneously isosceles.

Proof of the Formula (7):

The four similar triangles and that  $AD \parallel EC$  give two equal relations, namely

(23) 
$$\frac{a-x}{b} = \frac{x}{c} = \frac{a}{b+c} = \frac{z}{y} = \frac{y}{d+z}$$

and

(24) 
$$\frac{x}{d} = \frac{z}{a-x} \; .$$



Figure 5.

116

From (23) we get

(25) 
$$y^2 = z(d+z) = zd + z^2$$
.

Using (24) we get

(26) 
$$y^2 = x(a-x) + z^2$$
.

Now using (23) again, this becomes

(27) 
$$y^{2} = \frac{c}{b}(a-x)^{2} + y^{2}\left(\frac{a}{b+c}\right)^{2}$$

which can be rewritten as

(28) 
$$y^2 \left(1 - \left(\frac{a}{b+c}\right)^2\right) = \frac{c}{b}(a-x)^2 .$$

From this equation we get the equivalence

(29) 
$$y = a - x \Leftrightarrow \frac{b - c}{b} = \left(\frac{a}{b + c}\right)^2,$$

which completes the proof.

Although this is considerably simpler than our original proof, we suspect a simpler proof can be found.  $\dagger$ 

## 5. Geometric Summary.

It is striking that the identical figure arises in cases 1 and 2 and a very similar figure arises in case 5. In cases 1 and 2, we considered two cases of equality between edges of  $\triangle ABD$ . The trivial case, c = d, gives  $\angle C = 0$ .

 $<sup>\</sup>dagger$  As a matter of fact, we have received a simpler proof from Professor Andy Liu in Edmonton on July 16, 1991. His proof refers to Figure 4 with the altitude from A added.

Since  $\triangle ABC \sim \triangle DAC$ , an equality between sides of  $\triangle DAC$  makes  $\triangle ABC$  isosceles. We can make other simple constructions, e.g. find D so that  $\angle ADB = \angle B$ ; but they do not lead to any other relations.

In case 5, we have the same basic construction, but with AD bisecting  $\angle A$ . There are six possible equalities of sides in  $\triangle ABD$  and  $\triangle ACD$ . The five other cases do not lead to any new relations.

We have examined all linear relationships  $\alpha \angle A + \beta \angle B + \gamma \angle C = 0$  with  $\alpha, \beta, \gamma, \in \{-2, -1, 0, 1, 2\}$  and all of these reduce to the five cases we have considered. Initially we thought all these cases would lead to second degree relations among the sides, so case 5 and its difficulty were quite unexpected.

# PART II DIOPHANTINE ANALYSIS

#### 6. Integral Solutions.

One of the inspirations for this study is the fact that the 4, 5, 6 triangle has one angle double another [8, 10, 12]. It is very remarkable that the smallest integral solutions of most of our cases have sides which are consecutive integers.

(2,3,4) = (b,c,a) is a solution of (4). (3,4,5) = (b,c,a) is a right triangle. (4,5,6) = (b,c,a) is a solution of (3). (6,7,8) = (c,a,b) is a solution of (7). (3,5,7) = (b,c,a) is a solution of (6). (3,7,8) = (c,a,b) is a solution of (5). (5,7,8) = (c,a,b) is a solution of (5).

We might add (1, 2, 3) = (a, b, c) is a solution of (3) and it is the smallest integral-sided scalene triangle. An obvious question is: what problem has (5, 6, 7) as an integral solution?

We also know (13, 14, 15) is the smallest Heronian triangle with consecutive sides [2, 11], so a general question is: what can be said about the integral-sided triangles (b-1, b, b+1)? We have not been able to make any progress on these questions.

# 7. All Solutions to the Diophantine Equations.

(1). The complete solution to  $a^2 = b^2 + bc$  is

(30) 
$$(a, b, c) = r(pq, p^2, q^2 - p^2)$$

for (q, p) coprime, 2p > q > p, r arbitrary.

<u>Proof</u>: If (a, b, c) are pairwise coprime, (3) is written

(31) 
$$a^2 = b(b+c)$$
.

Hence  $b = p^2$  and  $b + c = q^2$ , q > p coprime. The triangular inequality a + b > c gives the condition  $q^2 - pq - 2p^2 < 0$  or q < 2p.

$$q = 3, p = 2$$
 gives  $a = 6, b = 4$  and  $c = 5$ 

(2). The complete solution to  $a^2 = b^2 + ac$  is

(32) 
$$(a,b,c) = r(q^2, pq, q^2 - p^2)$$

for q > p coprime, r arbitrary.

<u>Proof</u>: If (a, b, c) are pairwise coprime, (4) is written

(33) 
$$b^2 = a(a-c)$$
.

Hence  $a = p^2$  and  $a - c = q^2$ , p > q coprime.

p = 2, q = 1 gives a = 4, b = 2 and c = 3.

(3) AND (4). The complete solutions to (6) and (5) are respectively

(34) 
$$(a,b,c) = \frac{r}{4}(3p^2 + q^2, 4pq, |3p^2 - q^2| - 2pq)$$

(35) 
$$(a, b, b+c)$$
 and  $(a, b+c, c)$ ,

when (p,q) are coprime odd numbers satisfying  $q \notin [p,3p]$ , and r an arbitrary factor.

<u>Proof</u>: (5) follows from (19) and (6). To solve (6) we assume (a, b, c) to be pairwise coprime and hence b or c odd. By symmetry we may choose b as odd. Now we write (6) as

(36) 
$$3b^2 = (2a + 2c + b)(2a - 2c - b)$$

A common prime factor p must be a factor in b and therefore odd. It is also a factor in the sum 4a and hence in a, and a factor in the difference 4c+2b and hence in c, a contradiction.

So, the two factors are coprime, and we must have  $b = p \cdot q$ , such that the following sets are equal:

(37) 
$$\{2a+2c+b, 2a-2c-b\} = \{3p^2, q^2\}.$$

By addition we get  $4a = 3p^2 + q^2$  and by subtraction we get

(38) 
$$4c + 2b = |3p^2 - q^2|$$

from which (34) follows.

p = 3 and q = 1 gives (a, b, c) = (7, 3, 5) etc.

In order to require c > 0, we must have either q < p or 3p < q. Then p = 1 and q = 5 gives (a, b, c) = (7, 5, 3) etc.

(5). The complete solution to (7) is

(39) 
$$(a,b,c) = r(p(2q^2 - p^2), q^3, q(q^2 - p^2))$$

for p < q coprime integers and r arbitrary.

<u>Proof</u>: A common factor in a and b will be a factor in c, so we may assume a and b to be coprime.

Let p be a prime factor in b to the power n, i.e.

(40) 
$$b = p^n \cdot d ,$$

such that p and d are coprime. Now let

(41) 
$$c = p^m \cdot f$$

 $m \geq 0$  is chosen such that p and f are coprime.

Then we substitute (40) and (41) in (7)

(42) 
$$p^{n} \cdot d \cdot a^{2} = p^{3m}(p^{n-m}d - f)(p^{n-m}d + f)^{2}.$$

Hence n = 3m. We conclude that there is a q such that  $b = q^3$  and a g such that  $c = q \cdot g$ . Hence we have

(43) 
$$q^3 a^2 = q^3 (q^2 - g)(q^2 + g)^2 .$$

Let  $h = q^2 - g$ , then from

(44) 
$$a^2 = h(2q^2 - h)^2$$

we conclude that h is a square, say  $h = p^2$ .

Then  $a = p(2q^2 - p^2)$ ,  $b = q^3$  and  $c = q(q^2 - p^2)$ . Now c > 0 requires p < q.

For p = 1, q = 2 we get (a, b, c) = (7, 8, 6).

# 8. Right Angled and Isosceles Triangles.

In the cases (5) and (6) we have obviously isosceles solutions and an even equilateral in case (5). In these cases a right angle excludes integral solutions.

If the triangles in the cases (3) or (4) shall be isosceles, the only possibility will be

(45) 
$$p^2 - q^2 = pq$$
,

but this equation has no rational solutions because

(46) 
$$\frac{p}{q} = \frac{1 \pm \sqrt{1+4}}{2}$$
.

If a triangle in case (7) shall be isosceles, then  $\angle A = \angle B$  or  $\angle A = \angle C$ .

If  $\angle A = \angle B$  then  $2\angle C = \angle A = \angle B$  and we are in case (3) with  $\angle B = \angle C$ , proved impossible above.

If  $\angle A = \angle C$ , then a = c and hence

(47) 
$$2pq^2 - p^3 = q^3 - qp^2$$

without integral solutions.

If a triangle in case (3) shall be right angled, then either  $\angle B$  or  $\angle C$  is right. In the first case the triangle becomes isosceles, in the second a  $30^{\circ}-60^{\circ}$ -triangle, neither of these can be integral.

The case (4) can be rewritten as

(48) 
$$\angle A = \frac{\pi}{2} + \frac{1}{2} \angle B$$

so these triangles are always obtuse-angled.

In the case (7)  $\angle C < \angle B$ , so only  $\angle B$  or  $\angle A$  may be right. If  $\angle B$  is right, then  $\angle A = 0$ , so this is not the case. If  $\angle A$  is right, then  $\angle B = \frac{3\pi}{8}$  and  $\angle C = \frac{\pi}{8}$ , so one triangle exists.

But the sides must satisfy (7) and Pythagoras. Eliminating  $a^2$  from the equation, we obtain

(49) 
$$b(b^2 + c^2) = (b - c)(b + c)^2$$
,

with the only solution

(50) 
$$b = (\sqrt{2} + 1)c$$
.

#### 9. Heronian Triangles.

Some of the triangles turn out to have integral areas. Of course, none of the triangles of (5) or (6) can avoid a factor  $\sqrt{3}$  so these are less interesting.

It proves useful to rewrite the parameterizations (30), (32) and (39) as follows. Now (p,q) are coprime, p < q.

|                                     | a             | b     | c            |
|-------------------------------------|---------------|-------|--------------|
| $\angle A = 2 \angle B$             | pq            | $p^2$ | $q^2 - p^2$  |
| $\angle A = 2 \angle B + \angle C$  | $q^2$         | pq    | $q^2 - p^2$  |
| $\angle A = 2(\angle B - \angle C)$ | $2pq^2 - q^3$ | $q^3$ | $q^3 - qp^2$ |

These forms make it easy to give a useful table of possible sides:

| p | q | $p^2$ | pq | $q^2 - p^2$ | $q^2$ | $2pq^2 - p^3$ | $q^3$ | $q^3 - qp^2$ |
|---|---|-------|----|-------------|-------|---------------|-------|--------------|
| 1 | 2 | *1    | 2  | 3           | 4     | 7             | 8     | 6            |
| 1 | 3 | *1    | 3  | 8           | 9     | 17            | 27    | 24           |
| 2 | 3 | 4     | 6  | 5           | 9     | 28            | 27    | 15           |
| 1 | 4 | *1    | 4  | 15          | 16    | 31            | 64    | 60           |
| 3 | 4 | 9     | 12 | 7           | 16    | 69            | 64    | 28           |
| 1 | 5 | *1    | 5  | 24          | 25    | 49            | 125   | 120          |
| 2 | 5 | *4    | 10 | 21          | 25    | 92            | 125   | 105          |
| 3 | 5 | 9     | 15 | 16          | 25    | 123           | 125   | 80           |
| 4 | 5 | 16    | 20 | 9           | 25    | 136           | 125   | 45           |
| 1 | 6 | *1    | 6  | 35          | 36    | 71            | 216   | 210          |
| 5 | 6 | 25    | 30 | 11          | 36    | 235           | 216   | 66           |
| 1 | 7 | *1    | 7  | 48          | 49    | 97            | 343   | 336          |
| 2 | 7 | *4    | 14 | 45          | 49    | 188           | 343   | 315          |
| 3 | 7 | *9    | 21 | 40          | 49    | 267           | 343   | 252          |
| 4 | 7 | 16    | 28 | 33          | 49    | 328           | 343   | 231          |
| 5 | 7 | 25    | 35 | 24          | 49    | 365           | 343   | 168          |
| 6 | 7 | 36    | 42 | 13          | 49    | 372           | 343   | 91           |
| 1 | 8 | *1    | 8  | 63          | 64    | 127           | 512   | 504          |
| 3 | 8 | *9    | 24 | 55          | 64    | 357           | 512   | 440          |
| 5 | 8 | 25    | 40 | 39          | 64    | 515           | 512   | 312          |
| 7 | 8 | 49    | 56 | 15          | 64    | 553           | 512   | 120          |

The \* means that a case (3) triangle does not exist because  $q\geq 2p.$ 

Of course, it is not obvious whether any of these have integral area. It is convenient to make use of the formula of Heron,

(51) 
$$\triangle = \text{Area} = \sqrt{s(s-a)(s-b)(s-c)} ,$$

where  $s = \frac{1}{2}(a + b + c)$ .

In the case (3) we obtain

$$s = \frac{1}{2}(pq + p^2 + q^2 - p^2) = \frac{1}{2}q(p+q)$$

$$s - a = \frac{1}{2}qp + \frac{1}{2}q^2 - pq = \frac{1}{2}q(q-p)$$

$$s - b = \frac{1}{2}qp + \frac{1}{2}q^2 - p^2 = \frac{1}{2}(q-p)(q+2p)$$

$$s - c = \frac{1}{2}qp + \frac{1}{2}q^2 - q^2 + p^2 = \frac{1}{2}(q+p)(2p-q)$$

So, we get

(52)

(53) 
$$\Delta^2 = \left(\frac{1}{4}\right)^2 \cdot q^2 \cdot (p+q)^2 \cdot (q-p)^2 \cdot (2p+q)(2p-q) \ .$$

For  $\triangle$  to be an integer,  $(2p+q)(2p-q) = 4p^2 - q^2$  must be a square. Considerations (mod 4) show that q must be even, which makes  $\triangle^2$  an integer and also makes p odd. Any common factor of 2p + q and 2p - q must divide their sum 4p and their difference 2q, but gcd(4p, 2q) can only be 2 or 4. So either

$$(54) 2p+q=4s^2 \wedge 2p-q=4t^2$$

or

$$(55) 2p+q=2s^2 \wedge 2p-q=2t^2 .$$

So, we have two possibilities,

(56) 
$$p = s^2 + t^2 \wedge q = 2(s^2 - t^2)$$

and

(57) 
$$p = \frac{s^2 + t^2}{2} \wedge q = s^2 - t^2$$

with (56) to apply for s, t coprime of different parity, and (57) for s, t coprime, both odd. The area becomes then either

$$(58) \qquad \qquad \triangle = q \cdot (q^2 - p^2) \cdot s \cdot t$$

or

where s, t have different parity in (58) and s, t are both odd in (59).

So, we can make the following table of Heronian triangles:

|   |   |    |    | a    | b     | c           | $\bigtriangleup$                                 |
|---|---|----|----|------|-------|-------------|--------------------------------------------------|
| s | t | p  | q  | pq   | $p^2$ | $q^2 - p^2$ | $\left(\frac{1}{2}\right)q\cdot c\cdot s\cdot t$ |
| 2 | 1 | 5  | 6  | 30   | 25    | 11          | 132                                              |
| 3 | 1 | 5  | 8  | 40   | 25    | 39          | 468                                              |
| 4 | 1 | 17 | 30 | 510  | 289   | 611         | 73320                                            |
| 5 | 1 | 13 | 24 | 312  | 169   | 407         | 24420                                            |
| 5 | 2 | 29 | 42 | 1218 | 841   | 923         | 387660                                           |
| 6 | 1 | 37 | 70 | 2590 | 1369  | 3531        | 1483020                                          |

In the case of (4) we obtain:

 $s = \frac{1}{2}(q^2 + pq + q^2 - p^2) = \frac{1}{2}(q + p)(2q - p)$  $s - a = q^2 + \frac{1}{2}(pq - p^2) - q^2 = \frac{1}{2}p(q - p)$  $s - b = q^2 + \frac{1}{2}(pq - p^2) - pq = \frac{1}{2}(q - p)(2q + p)$ 

$$s - c = q^2 + \frac{1}{2}(pq - p^2) - q^2 + p^2 = \frac{1}{2}p(q + p)$$
.

So, we get

(60)

We can use the solutions (56) and (57) with p and q interchanged. We get for the area

(62) 
$$\Delta = p \cdot (q^2 - p^2) \cdot s \cdot t \quad (s, t \text{ even})$$

or

(63) 
$$\triangle = \frac{1}{2} \cdot p \cdot (q^2 - p^2) \cdot s \cdot t \quad (s, t \text{ odd})$$

and the following table:

|   |   |    |    | a     | b    | c           | $\bigtriangleup$                                    |
|---|---|----|----|-------|------|-------------|-----------------------------------------------------|
| s | t | p  | q  | $q^2$ | pq   | $q^2 - p^2$ | $\left(\frac{1}{2}\right)q \cdot c \cdot s \cdot t$ |
| 3 | 2 | 10 | 13 | 169   | 130  | 69          | 4140                                                |
| 4 | 3 | 14 | 25 | 625   | 350  | 429         | 72072                                               |
| 5 | 3 | 16 | 17 | 289   | 272  | 33          | 3960                                                |
| 5 | 4 | 18 | 41 | 1681  | 738  | 1357        | 488520                                              |
| 6 | 5 | 22 | 61 | 3721  | 1342 | 3237        | 2136420                                             |
| 7 | 5 | 24 | 37 | 1369  | 888  | 793         | 333060                                              |
| 7 | 6 | 26 | 85 | 7225  | 2210 | 6549        | 7151508                                             |

In the case of (7) we obtain;

$$s = \frac{1}{2}(2pq^{2} - p^{3} + q^{3} + q^{3} - qp^{2}) = \frac{1}{2}(q + p)(2q^{2} - p^{2})$$

$$s - a = pq^{2} + q^{3} - \frac{1}{2}p^{3} - \frac{1}{2}qp^{2} - 2pq^{2} + p^{3} = \frac{1}{2}(q - p)(2q^{2} - p^{2})$$

$$(64)$$

$$s - b = pq^{2} + q^{3} - \frac{1}{2}p^{3} - \frac{1}{2}qp^{2} - q^{3} = \frac{1}{2}p(q - p)(2q + p)$$

$$s - c = pq^{2} + q^{3} - \frac{1}{2}p^{3} - \frac{1}{2}qp^{2} - q^{3} + qp^{2} = \frac{1}{2}p(q + p)(2q - p) .$$

So, we get

(65) 
$$\Delta^2 = \left(\frac{1}{4}\right)^2 \cdot p^2 \cdot (q^2 - p^2)^2 \cdot (2q^2 - p^2)^2 \cdot (2q + p) \cdot (2q - p) .$$

We can again use the solutions (56) and (57) with p and q interchanged. We get for the area the formulas

(66) 
$$\Delta = p \cdot (q^2 - p^2)(2q^2 - p^2) \cdot s \cdot t \quad (s, t \text{ even})$$

or

and the table:

|   |   |    |    | a             | b     | c          | $\bigtriangleup$                                                     |
|---|---|----|----|---------------|-------|------------|----------------------------------------------------------------------|
| s | t | p  | q  | $2pq^2 - p^3$ | $q^3$ | $q^3-qp^2$ | $\left(\frac{1}{2}\right) \cdot \frac{c}{q} \cdot a \cdot s \cdot t$ |
| 3 | 2 | 10 | 13 | 2380          | 2197  | 897        | 985320                                                               |
| 4 | 3 | 14 | 25 | 14756         | 15625 | 10725      | 75963888                                                             |
| 5 | 3 | 16 | 17 | 5152          | 4913  | 561        | 1275120                                                              |
| 5 | 4 | 18 | 41 | 54684         | 68921 | 55637      | 1484123760                                                           |
| 7 | 5 | 24 | 37 | 51888         | 50653 | 29341      | 720075720                                                            |

10. Conclusion.





# Figure 6.

It is striking that the common feature of the problems investigated are the isosceles triangles involved. Some line segment from A to D on A is drawn, and then either x = d, d = c, c = x or even d = c = x. Because of this similarity, the interpretations as angle relations are very similar, but in spite of this the side relations are different and in particular the case (7) with d = c is surprisingly complicated.

Nevertheless, the question of possible Heronian triangles is answered by the application of the very same Diophantine equation in the three solvable cases,

(68) 
$$4p^2 - q^2 = r^2$$

proving a sort of similarity between the side relations too.

#### References

- J. E. Carroll and K. Yanosko, "The Determination of a Class of Primitive Integral Triangles," *Fibonacci Quarterly* 29 (1991) 3–6.
- L. E. Dickson, History of the Theory of Numbers, Volume II, Diophantine Analysis. Rational or Heron Triangles and Triangles with Rational Sides and a Linear Relation Between the Angles, G. E. Stechert & Co., New York, 1934, pp. 191–201, 213–214.
- 3. J. Heinrichs, Aufgabe: Dreiecke mit ganzzahligen Seiten anzugeben so daß  $\alpha = n\beta + \gamma$  wird, Zeitschr. math. u. naturwiß. Unterricht 42 (1911) 148–153.
- R. S. Luthar, "Integer-Sided Triangles with One Angle Twice Another," College Math. J. 15 (1984) 55–56.
- E. A. Maxwell, "Triangles Whose Angles are in Arithmetic Progression," Math. Gazette 42 (1958) 113.
- E. A. Maxwell, "Triangles Whose Sides are in Geometric Progression," Math. Gazette 42 (1958) 114.
- K. Schwering, "Über Dreiecke, in denen ein Winkel das Vielfache eines andern ist," Jahresbericht über das Königliche Gymnasium Nepomucenianum zu Coesfeld im Schuljahre 1885–86, 85 (1886) 3–7.
- K. Schwering, 100 Aufgaben aus der niederen Geometrie nebst vollständigen Lösungen, Aufgabe 56: Von einem Dreieck ist gegeben: die Grundlinie BC, der zugehörige Höhenfuβpunkt D und die Bestimmung α = 2β, Herdersche Verlagshandlung, Freiburg im Breisgau 1891, 88–89.
- K. Schwering, "Ganzzahlige Dreiecke mit Winkelbeziehungen," Archiv der Mathematik und Physik (3) 21 (1913) 129–136.
- T. Sole, The Ticket to Heaven and Other Superior Puzzles, Penguin, London, 1988, 70, 79.

- G. Wain and W. W. Willson, "13, 14, 15: An Investigation," Math. Gazette 71, No. 455 (1987) 32–37.
- 12. W. W. Willson, "A Generalization of a Property of the 4, 5, 6 Triangle," *Math. Gazette* 60, No. 412 (1976) 130–131.