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PART I

GEOMETRY

0. Abstract and Introduction.

The simplest examples of equivalent relations between angles and sides for a triangle

4ABC with sides a, b, and c are well known, e.g.,

(1) 6 A = 6 B ⇔ a = b

and

(2) 6 A = 6 B + 6 C ⇔ a2 = b2 + c2 ,

because the angle-relation is equivalent to 6 A = π
2 .

K. Schwering [7, 8, 9] and J. Heinrichs [3] (see also Dickson [2]) have studied relations

of the form 6 A = n 6 B and 6 A = n 6 B + 6 C by the help of trigonometric functions and

roots of unity. W. W. Willson [12] and R. S. Luthar [4] have considered the case n = 2,

and recently J. E. Carroll and K. Yanosko [1] have generalized to the case of n rational.

E. A. Maxwell [5, 6] has considered triangles with 26 A = 6 B+ 6 C. In this paper we present

elementary geometric proofs of the following equivalences:

6 A = 26 B ⇔ a2 = b2 + bc(3)

6 A = 26 B + 6 C ⇔ a2 = b2 + ac(4)

26 A = 6 B + 6 C ⇔ a2 = b2 + c2 − bc(5)

6 A = 2(6 B + 6 C)⇔ a2 = b2 + c2 + bc(6)

6 A = 2(6 B − 6 C)⇔ ba2 = (b− c)(b+ c)2(7)
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Furthermore, we present the formulas for the complete set of integral solutions for each

of the types of triangles.

1. All Triangles with 6 A = 26 B .

In 4ABC with 6 A > 6 B we draw a line from A to D on a such that 6 CAD = 6 B as

in Fig. 1.

Then 4ABC ∼ 4DAC, so that

(8)
b

a
=
d

c
=
a− x
b

6 A = 26 B ⇔ d = x

Figure 1.

or the two equalities

ad = bc(9)

ax = a2 − b2(10)

from which we get the valid formula:

(11)
x

d
=
a2 − b2

bc
.

Hence, we conclude that 6 A = 26 B iff 4ADC is isosceles or x = d, i.e.,

(12) 6 A = 26 B ⇔ 6 BAD = 6 B ⇔ x = d⇔ a2 − b2 = bc .

This proves (3).
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2. All Triangles with 6 A = 26 B + 6 C .

In a triangle with 6 A > 6 B+ 6 C we draw a line from A to D on a such that 6 CAD =

6 B as in Fig. 2.

Again 4ABC ∼ 4DAC so that we have (10).

Now,

(13) 6 A = 26 B + 6 C ⇔ 6 A− 6 B = 6 B + 6 C .

6 A = 26 B + 6 C ⇔ x = c

Figure 2.

But we have that

(14) 6 BAD = 6 A− 6 B

and

(15) 6 BDA = 6 B + 6 C .

Hence we have

(16) 6 A = 26 B + 6 C ⇔ 6 BAD = 6 BDA⇔ x = c⇔ ac = ax⇔ ac = a2 − b2 .

This proves (4).

3. All Triangles with 6 A = π
3 or 6 A = 2π

3 .

The angle relations in (5) and (6) are equivalent to the equations 6 A = π
3 and 6 A = 2π

3

respectively. The relations of the sides are, of course, just the cosine relations for these

angles. But a closer look proves worthwhile.
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Suppose 6 A = π
3 and 6 C < 6 A < 6 B. (Signs of equality gives the trivial case of

equilateral triangles, a = b = c.) Then we draw two equilateral triangles with 6 A of

sidelength’s respectively c and b as in Fig. 3.

6 A = 6 A′ =
π

3
and 6 BDC =

2π

3

Figure 3.

Then we notice the pair of solutions 4ABC and 4A′BC with sides a, b, c and a, b,

b− c respectively. Furthermore, 4DBC has 6 BDC = 2π
3 and sides a, c, b− c.

So, the solutions appear three at a time.

An elementary solution of the cosine relation comes from Pythagoras applied to the

triangles 4ABE and 4BCE; i.e.,

c2 −
(
c

2

)2

= h2 = a2 −
(
b− c

2

)2

(17)

⇒

c2 = a2 − b2 + bc(18)

proving (5) from which

(19) a2 = c2 + (b− c)2 + c(b− c)

proving (6).
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4. All Triangles with 6 A = 2(6 B − 6 C) .

This equation is similar to the previous ones so it is surprising that it is equivalent to

a third degree equation in the sides; and no longer surprising it is much harder to prove.

We draw in a triangle with 6 C < 6 B the bisector from A to D on a as in Fig. 4.

6 A = 2(6 B − 6 C)⇔ d = c

Figure 4.

Then 6 ADB = 6 C + 1
2
6 A. Hence the relation is equivalent to 4DAB being isosceles.

(20) 6 A = 2(6 B − 6 C)⇔ 6 C +
1

2
6 A = 6 B ⇔ c = d .

But this time we need some further lines for support. We extend AB over A to the

point E such that AE = b, and we extend AD over D to the point F , chosen such that the

angle 6 DCF = 1
2
6 A, as is shown in Fig. 5.

The first extension gives us the isosceles 4CAE, and hence that 6 ACE = 6 CEA =
1
2
6 CAB. Therefore

(21) 4DAB ∼ 4CEB .

The second extension gives us

(22) 4DAB ∼ 4CAF ∼ 4DCF .
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The angle relation is thus equivalent to the four similar triangles being simultaneously

isosceles.

Proof of the Formula (7):

The four similar triangles and that AD ‖ EC give two equal relations, namely

(23)
a− x
b

=
x

c
=

a

b+ c
=
z

y
=

y

d+ z

and

(24)
x

d
=

z

a− x
.

Figure 5.
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From (23) we get

(25) y2 = z(d+ z) = zd+ z2 .

Using (24) we get

(26) y2 = x(a− x) + z2 .

Now using (23) again, this becomes

(27) y2 =
c

b
(a− x)2 + y2

(
a

b+ c

)2

which can be rewritten as

(28) y2

(
1−

(
a

b+ c

)2
)

=
c

b
(a− x)2 .

From this equation we get the equivalence

(29) y = a− x⇔ b− c
b

=

(
a

b+ c

)2

,

which completes the proof.

Although this is considerably simpler than our original proof, we suspect a simpler

proof can be found. †
5. Geometric Summary.

It is striking that the identical figure arises in cases 1 and 2 and a very similar figure

arises in case 5. In cases 1 and 2, we considered two cases of equality between edges of

4ABD. The trivial case, c = d, gives 6 C = 0.

† As a matter of fact, we have received a simpler proof from Professor Andy Liu in

Edmonton on July 16, 1991. His proof refers to Figure 4 with the altitude from A added.
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Since 4ABC ∼ 4DAC, an equality between sides of 4DAC makes 4ABC isosceles.

We can make other simple constructions, e.g. find D so that 6 ADB = 6 B; but they do

not lead to any other relations.

In case 5, we have the same basic construction, but with AD bisecting 6 A. There are

six possible equalities of sides in 4ABD and 4ACD. The five other cases do not lead to

any new relations.

We have examined all linear relationships α 6 A + β 6 B + γ 6 C = 0 with α, β, γ, ∈
{−2,−1, 0, 1, 2} and all of these reduce to the five cases we have considered. Initially we

thought all these cases would lead to second degree relations among the sides, so case 5 and

its difficulty were quite unexpected.

PART II

DIOPHANTINE ANALYSIS

6. Integral Solutions.

One of the inspirations for this study is the fact that the 4, 5, 6 triangle has one angle

double another [8, 10, 12]. It is very remarkable that the smallest integral solutions of most

of our cases have sides which are consecutive integers.

(2, 3, 4) = (b, c, a) is a solution of (4).

(3, 4, 5) = (b, c, a) is a right triangle.

(4, 5, 6) = (b, c, a) is a solution of (3).

(6, 7, 8) = (c, a, b) is a solution of (7).

(3, 5, 7) = (b, c, a) is a solution of (6).

(3, 7, 8) = (c, a, b) is a solution of (5).

(5, 7, 8) = (c, a, b) is a solution of (5).

We might add (1, 2, 3) = (a, b, c) is a solution of (3) and it is the smallest integral-sided

scalene triangle. An obvious question is: what problem has (5, 6, 7) as an integral solution?

We also know (13, 14, 15) is the smallest Heronian triangle with consecutive sides [2, 11],

so a general question is: what can be said about the integral-sided triangles (b−1, b, b+ 1)?

We have not been able to make any progress on these questions.
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7. All Solutions to the Diophantine Equations.

(1). The complete solution to a2 = b2 + bc is

(30) (a, b, c) = r(pq, p2, q2 − p2)

for (q, p) coprime, 2p > q > p, r arbitrary.

Proof: If (a, b, c) are pairwise coprime, (3) is written

(31) a2 = b(b+ c) .

Hence b = p2 and b+ c = q2, q > p coprime. The triangular inequality a+ b > c gives the

condition q2 − pq − 2p2 < 0 or q < 2p.

q = 3, p = 2 gives a = 6, b = 4 and c = 5.

(2). The complete solution to a2 = b2 + ac is

(32) (a, b, c) = r(q2, pq, q2 − p2)

for q > p coprime, r arbitrary.

Proof: If (a, b, c) are pairwise coprime, (4) is written

(33) b2 = a(a− c) .

Hence a = p2 and a− c = q2, p > q coprime.

p = 2, q = 1 gives a = 4, b = 2 and c = 3.

(3) AND (4). The complete solutions to (6) and (5) are respectively

(a, b, c) =
r

4
(3p2 + q2, 4pq, |3p2 − q2| − 2pq)(34)

(a, b, b+ c) and (a, b+ c, c),(35)

when (p, q) are coprime odd numbers satisfying q /∈ [p, 3p], and r an arbitrary factor.

Proof: (5) follows from (19) and (6). To solve (6) we assume (a, b, c) to be pairwise

coprime and hence b or c odd. By symmetry we may choose b as odd. Now we write (6) as

(36) 3b2 = (2a+ 2c+ b)(2a− 2c− b) .

A common prime factor p must be a factor in b and therefore odd. It is also a factor in the

sum 4a and hence in a, and a factor in the difference 4c+2b and hence in c, a contradiction.
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So, the two factors are coprime, and we must have b = p · q, such that the following sets are

equal:

(37) {2a+ 2c+ b, 2a− 2c− b} = {3p2, q2} .

By addition we get 4a = 3p2 + q2 and by subtraction we get

(38) 4c+ 2b = |3p2 − q2|

from which (34) follows.

p = 3 and q = 1 gives (a, b, c) = (7, 3, 5) etc.

In order to require c > 0, we must have either q < p or 3p < q. Then p = 1 and q = 5

gives (a, b, c) = (7, 5, 3) etc.

(5). The complete solution to (7) is

(39) (a, b, c) = r(p(2q2 − p2), q3, q(q2 − p2))

for p < q coprime integers and r arbitrary.

Proof: A common factor in a and b will be a factor in c, so we may assume a and b to

be coprime.

Let p be a prime factor in b to the power n, i.e.

(40) b = pn · d ,

such that p and d are coprime. Now let

(41) c = pm · f

m ≥ 0 is chosen such that p and f are coprime.

Then we substitute (40) and (41) in (7)

(42) pn · d · a2 = p3m(pn−md− f)(pn−md+ f)2 .

Hence n = 3m. We conclude that there is a q such that b = q3 and a g such that

c = q · g. Hence we have

(43) q3a2 = q3(q2 − g)(q2 + g)2 .
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Let h = q2 − g, then from

(44) a2 = h(2q2 − h)2

we conclude that h is a square, say h = p2.

Then a = p(2q2 − p2), b = q3 and c = q(q2 − p2). Now c > 0 requires p < q.

For p = 1, q = 2 we get (a, b, c) = (7, 8, 6).

8. Right Angled and Isosceles Triangles.

In the cases (5) and (6) we have obviously isosceles solutions and an even equilateral

in case (5). In these cases a right angle excludes integral solutions.

If the triangles in the cases (3) or (4) shall be isosceles, the only possibility will be

(45) p2 − q2 = pq ,

but this equation has no rational solutions because

(46)
p

q
=

1±
√

1 + 4

2
.

If a triangle in case (7) shall be isosceles, then 6 A = 6 B or 6 A = 6 C.

If 6 A = 6 B then 2 6 C = 6 A = 6 B and we are in case (3) with 6 B = 6 C, proved

impossible above.

If 6 A = 6 C, then a = c and hence

(47) 2pq2 − p3 = q3 − qp2

without integral solutions.

If a triangle in case (3) shall be right angled, then either 6 B or 6 C is right. In the

first case the triangle becomes isosceles, in the second a 30◦–60◦-triangle, neither of these

can be integral.

The case (4) can be rewritten as

(48) 6 A =
π

2
+

1

2
6 B
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so these triangles are always obtuse-angled.

In the case (7) 6 C < 6 B, so only 6 B or 6 A may be right. If 6 B is right, then 6 A = 0,

so this is not the case. If 6 A is right, then 6 B = 3π
8 and 6 C = π

8 , so one triangle exists.

But the sides must satisfy (7) and Pythagoras. Eliminating a2 from the equation, we

obtain

(49) b(b2 + c2) = (b− c)(b+ c)2 ,

with the only solution

(50) b = (
√

2 + 1)c .

9. Heronian Triangles.

Some of the triangles turn out to have integral areas. Of course, none of the triangles

of (5) or (6) can avoid a factor
√

3 so these are less interesting.

It proves useful to rewrite the parameterizations (30), (32) and (39) as follows.

Now (p, q) are coprime, p < q.

a b c

6 A = 26 B pq p2 q2 − p2
6 A = 26 B + 6 C q2 pq q2 − p2
6 A = 2(6 B − 6 C) 2pq2 − q3 q3 q3 − qp2

These forms make it easy to give a useful table of possible sides:
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p q p2 pq q2 − p2 q2 2pq2 − p3 q3 q3 − qp2

1 2 ∗1 2 3 4 7 8 6

1 3 ∗1 3 8 9 17 27 24

2 3 4 6 5 9 28 27 15

1 4 ∗1 4 15 16 31 64 60

3 4 9 12 7 16 69 64 28

1 5 ∗1 5 24 25 49 125 120

2 5 ∗4 10 21 25 92 125 105

3 5 9 15 16 25 123 125 80

4 5 16 20 9 25 136 125 45

1 6 ∗1 6 35 36 71 216 210

5 6 25 30 11 36 235 216 66

1 7 ∗1 7 48 49 97 343 336

2 7 ∗4 14 45 49 188 343 315

3 7 ∗9 21 40 49 267 343 252

4 7 16 28 33 49 328 343 231

5 7 25 35 24 49 365 343 168

6 7 36 42 13 49 372 343 91

1 8 ∗1 8 63 64 127 512 504

3 8 ∗9 24 55 64 357 512 440

5 8 25 40 39 64 515 512 312

7 8 49 56 15 64 553 512 120

The ∗ means that a case (3) triangle does not exist because q ≥ 2p.

Of course, it is not obvious whether any of these have integral area. It is convenient to

make use of the formula of Heron,

(51) 4 = Area =
√
s(s− a)(s− b)(s− c) ,

where s = 1
2 (a+ b+ c).
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In the case (3) we obtain

(52)

s =
1

2
(pq + p2 + q2 − p2) =

1

2
q(p+ q)

s− a =
1

2
qp+

1

2
q2 − pq =

1

2
q(q − p)

s− b =
1

2
qp+

1

2
q2 − p2 =

1

2
(q − p)(q + 2p)

s− c =
1

2
qp+

1

2
q2 − q2 + p2 =

1

2
(q + p)(2p− q) .

So, we get

(53) 42 =

(
1

4

)2

· q2 · (p+ q)2 · (q − p)2 · (2p+ q)(2p− q) .

For 4 to be an integer, (2p+ q)(2p− q) = 4p2 − q2 must be a square. Considerations

(mod 4) show that q must be even, which makes 42 an integer and also makes p odd. Any

common factor of 2p + q and 2p − q must divide their sum 4p and their difference 2q, but

gcd(4p, 2q) can only be 2 or 4. So either

(54) 2p+ q = 4s2 ∧ 2p− q = 4t2

or

(55) 2p+ q = 2s2 ∧ 2p− q = 2t2 .

So, we have two possibilities,

(56) p = s2 + t2 ∧ q = 2(s2 − t2)

and

(57) p =
s2 + t2

2
∧ q = s2 − t2
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with (56) to apply for s, t coprime of different parity, and (57) for s, t coprime, both odd.

The area becomes then either

(58) 4 = q · (q2 − p2) · s · t

or

(59) 4 =
1

2
· q(q2 − p2) · s · t ,

where s, t have different parity in (58) and s, t are both odd in (59).

So, we can make the following table of Heronian triangles:

a b c 4
s t p q pq p2 q2 − p2

(
1
2

)
q · c · s · t

2 1 5 6 30 25 11 132

3 1 5 8 40 25 39 468

4 1 17 30 510 289 611 73320

5 1 13 24 312 169 407 24420

5 2 29 42 1218 841 923 387660

6 1 37 70 2590 1369 3531 1483020

In the case of (4) we obtain:

(60)

s =
1

2
(q2 + pq + q2 − p2) =

1

2
(q + p)(2q − p)

s− a = q2 +
1

2
(pq − p2)− q2 =

1

2
p(q − p)

s− b = q2 +
1

2
(pq − p2)− pq =

1

2
(q − p)(2q + p)

s− c = q2 +
1

2
(pq − p2)− q2 + p2 =

1

2
p(q + p) .

So, we get

(61) 42 =

(
1

4

)2

· p2 · (q2 − p2)2 · (2q − p) · (2q + p) .
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We can use the solutions (56) and (57) with p and q interchanged. We get for the area

(62) 4 = p · (q2 − p2) · s · t (s, t even)

or

(63) 4 =
1

2
· p · (q2 − p2) · s · t (s, t odd)

and the following table:

a b c 4
s t p q q2 pq q2 − p2

(
1
2

)
q · c · s · t

3 2 10 13 169 130 69 4140

4 3 14 25 625 350 429 72072

5 3 16 17 289 272 33 3960

5 4 18 41 1681 738 1357 488520

6 5 22 61 3721 1342 3237 2136420

7 5 24 37 1369 888 793 333060

7 6 26 85 7225 2210 6549 7151508

In the case of (7) we obtain;

(64)

s =
1

2
(2pq2 − p3 + q3 + q3 − qp2) =

1

2
(q + p)(2q2 − p2)

s− a = pq2 + q3 − 1

2
p3 − 1

2
qp2 − 2pq2 + p3 =

1

2
(q − p)(2q2 − p2)

s− b = pq2 + q3 − 1

2
p3 − 1

2
qp2 − q3 =

1

2
p(q − p)(2q + p)

s− c = pq2 + q3 − 1

2
p3 − 1

2
qp2 − q3 + qp2 =

1

2
p(q + p)(2q − p) .

So, we get

(65) 42 =

(
1

4

)2

· p2 · (q2 − p2)2 · (2q2 − p2)2 · (2q + p) · (2q − p) .
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We can again use the solutions (56) and (57) with p and q interchanged. We get for

the area the formulas

(66) 4 = p · (q2 − p2)(2q2 − p2) · s · t (s, t even)

or

(67) 4 =
1

2
p(q2 − p2)(2q2 − p2) · s · t (s, t odd)

and the table:

a b c 4
s t p q 2pq2 − p3 q3 q3 − qp2

(
1
2

)
· cq · a · s · t

3 2 10 13 2380 2197 897 985320

4 3 14 25 14756 15625 10725 75963888

5 3 16 17 5152 4913 561 1275120

5 4 18 41 54684 68921 55637 1484123760

7 5 24 37 51888 50653 29341 720075720

10. Conclusion.

d = x or x = c or d = c

Figure 6.

It is striking that the common feature of the problems investigated are the isosceles

triangles involved. Some line segment from A to D on A is drawn, and then either x = d,

d = c, c = x or even d = c = x. Because of this similarity, the interpretations as angle
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relations are very similar, but in spite of this the side relations are different and in particular

the case (7) with d = c is surprisingly complicated.

Nevertheless, the question of possible Heronian triangles is answered by the application

of the very same Diophantine equation in the three solvable cases,

(68) 4p2 − q2 = r2

proving a sort of similarity between the side relations too.
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