SOLUTIONS

No problem is ever permanently closed. Any comments, new solutions, or new insights on old problems are always welcomed by the problem editor.
25. [1990, 140] Proposed by Mohammad K. Azarian, University of Evansville, Evansville, Indiana.

Let P be the free product with amalgamations of any collection $\left\{C_{\gamma}\right\}_{\gamma \in \Gamma}$ of infinite cyclic groups, where Γ is an indexing set of cardinality greater than one.
A. Construct an element $h \in P$ and a subgroup $T<P$ such that $|P: T|$ is infinite but $|P:<h, T>|$ is finite.
B. Is h uniquely determined? Is T uniquely determined?

Solution by the proposer.
Let $C_{\gamma}=<c_{\gamma}>$, let $H_{\gamma}=<c_{\gamma}^{m_{\gamma}}>$, where m_{γ} are natural numbers, greater than one, and let

$$
P=\star_{\gamma \in \Gamma}\left(C_{\gamma} ; H_{\gamma}\right)
$$

with amalgamated subgroup H.
A. Consider an arbitrary element

$$
h=c_{\gamma}^{q m_{\gamma}} \quad(\gamma \in \Gamma)
$$

of H, where q is a natural number. Now, let

$$
T=<c_{\gamma}^{p_{\gamma}}: \gamma \in \Gamma>
$$

where p_{γ} are prime numbers greater than one and $\left(p_{\gamma}, q m_{\gamma}\right)=1$, for all $\gamma \in \Gamma$. We claim that this h is the required element and also the subgroup T defined as above is the required subgroup. (Note that if Γ is finite and p is any prime number greater than one, such that $\left(p, q m_{\gamma}\right)=1$, then

$$
\left.T=<c_{\gamma}^{p}: \gamma \in \Gamma>\right)
$$

Proof of claim: $\left(p_{\gamma}, q m_{\gamma}\right)=1$ implies that there are integers r_{γ} and s_{γ} such that

$$
r_{\gamma} p_{\gamma}+s_{\gamma} q m_{\gamma}=1
$$

Thus,

$$
c_{\gamma}=c_{\gamma}^{r_{\gamma} p_{\gamma}+s_{\gamma} q m_{\gamma}}
$$

is an element of $<T, h>$, so that $<T, h>=P$. Therefore, it only remains to prove that T is of infinite index in P. To establish this fact, we choose $\alpha, \beta, \ldots, \eta$ distinct in Γ, and we show that $g_{1}, g_{2}, \ldots, g_{r}, \ldots$ are incongruent $(\bmod T)$, where

$$
g_{r}=\left(c_{\alpha} c_{\beta} \cdots c_{\eta}\right)^{r}
$$

and r is a natural number. For r and s different natural numbers, we wish to verify that

$$
g_{r}^{-1} g_{s} \notin T .
$$

If not, then there exists an element $t \in T$ such that

$$
g_{r}^{-1} g_{s}=\left(c_{\alpha} c_{\beta} \cdots c_{\eta}\right)^{s-r}=t=\prod_{i=1}^{n} c_{\gamma_{i}}^{k_{i} p_{\gamma_{i}}}
$$

where k_{i} is a non-zero integer. Now if $r>s$, then

$$
1=c_{\alpha} c_{\beta} \cdots c_{\eta} \cdots c_{\alpha} c_{\beta} \cdots c_{\eta} t
$$

If $\gamma_{1} \neq \eta$, no cancellations or simplifications are possible. Also, if $\gamma_{1}=\eta$, then

$$
c_{\eta} c_{\gamma_{1}}^{k_{1} p_{\gamma_{1}}}=c_{\eta}^{1+k_{1} p_{\gamma_{1}}}
$$

is not 1. Thus, we have a non-trivial expression for 1 , a contradiction. A similar argument will apply for $r<s$. Therefore, $r \neq s$ implies that

$$
g_{r} \not \equiv g_{s} \quad(\bmod T) .
$$

This completes the proof.
B. Obviously, neither h nor T is unique. Because a different q will produce a different h and also, as primes p_{γ} change so does T.

26*. [1990, 140] Proposed by Stanley Rabinowitz, Westford, Massachusetts.
Prove that

$$
\sum_{k=1}^{38} \sin \frac{k^{8} \pi}{38}=\sqrt{19}
$$

Comment by the editor.
No solutions have been received on this problem to date.
27. [1990, 141] Proposed by Don Redmond, Southern Illinois University, Carbondale, Illinois.

Show that

$$
\int_{1}^{\infty} \frac{t-[t]}{t^{2}(t+1)^{2}}(2 t+1) d t=\log 2-\frac{1}{2}
$$

where $\log 2$ denotes the natural logarithm of 2 and $[t]$ is the greatest integer less than or equal to t.

Solution I by Jayanthi Ganapathy, University of Wisconsin-Oshkosh, Oshkosh, Wisconsin.

First note that, for any integer $i \geq 2$, 'integration by parts' yields

$$
\begin{aligned}
\int_{i-1}^{i} \frac{(t-[t])(2 t+1)}{t^{2}(t+1)^{2}} d t & =-\left.\frac{t-[t]}{t(t+1)}\right|_{i-1} ^{i}+\left.\log \left(\frac{t}{t+1}\right)\right|_{i-1} ^{i} \\
& =-\frac{1}{i(i+1)}+\log \left(\frac{i}{i+1}\right)-\log \left(\frac{i-1}{i}\right) \\
& =-\left(\frac{1}{i}-\frac{1}{i+1}\right)+\log \left(\frac{i}{i+1}\right)-\log \left(\frac{i-1}{i}\right)
\end{aligned}
$$

since, for any integer $k \geq 1, t-[t] \rightarrow 0$ as $t \rightarrow k^{+}$and $t-[t] \rightarrow 1$ as $t \rightarrow k^{-}$. Thus for any integer $n>1$,

$$
\begin{aligned}
\int_{1}^{n} \frac{(t-[t])(2 t+1)}{t^{2}(t+1)^{2}} d t & =-\sum_{i=2}^{n}\left(\frac{1}{i}-\frac{1}{i+1}\right)+\sum_{i=2}^{n}\left(\log \left(\frac{i}{i+1}\right)-\log \left(\frac{i-1}{i}\right)\right) \\
& =-\frac{1}{2}+\frac{1}{n+1}+\log \left(\frac{n}{n+1}\right)-\log \left(\frac{1}{2}\right)
\end{aligned}
$$

Let $n \rightarrow \infty$. It now follows that

$$
\begin{aligned}
\int_{1}^{\infty} \frac{(t-[t])(2 t+1)}{t^{2}(t+1)^{2}} d t & =-\frac{1}{2}-\log \left(\frac{1}{2}\right) \\
& =\log 2-\frac{1}{2}
\end{aligned}
$$

Solution II by Kandasamy Muthuvel, University of Wisconsin-Oshkosh, Oshkosh, Wisconsin.

It can be easily shown that

$$
\frac{(t-n)(2 t+1)}{t^{2}(t+1)^{2}}=\frac{1}{t}-\frac{n}{t^{2}}-\frac{1}{t+1}+\frac{n+1}{(t+1)^{2}}
$$

Hence for every positive integer n,

$$
\begin{aligned}
\int_{n}^{n+1} \frac{t-[t]}{t^{2}(t+1)^{2}} & (2 t+1) d t=\int_{n}^{n+1} \frac{(t-n)}{t^{2}(t+1)^{2}}(2 t+1) d t \\
& =\left.\left(\log t+\frac{n}{t}-\log (t+1)-\frac{n+1}{t+1}\right)\right|_{n} ^{n+1} \\
& =\log (n+1)-\log n-\frac{1}{n+1}-\log (n+2)+\log (n+1)+\frac{1}{n+2}
\end{aligned}
$$

Hence the integral in the given problem equals

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \sum_{r=1}^{n}\left(\log (r+1)-\log r+\log (r+1)-\log (r+2)+\frac{1}{r+2}-\frac{1}{r+1}\right) \\
& \quad=\lim _{n \rightarrow \infty}\left(\log (n+1)+\log 2-\log (n+2)+\frac{1}{n+2}-\frac{1}{2}\right) \\
& \quad=\lim _{n \rightarrow \infty}\left(\log \left(\frac{n+1}{n+2}\right)+\log 2+\frac{1}{n+2}-\frac{1}{2}\right) \\
& \quad=\log 2-\frac{1}{2}
\end{aligned}
$$

This completes the solution.

Solution III by the proposer.
Let a be a positive real number and b be a nonnegative real number. Then

$$
\begin{equation*}
\sum_{k=1}^{\infty} \frac{1}{(a k+b)(a(k+1)+b)}=\frac{1}{a} \sum_{k=1}^{\infty}\left(\frac{1}{a k+b}-\frac{1}{a(k+1)+b}\right)=\frac{1}{a(a+b)} \tag{1}
\end{equation*}
$$

If we write this sum as an integral we have

$$
\sum_{k=1}^{\infty} \frac{1}{(a k+b)(a(k+1)+b)}=\int_{1^{-}}^{\infty} \frac{d[t]}{(a t+b)(a(t+1)+b)}
$$

We have

$$
\begin{align*}
& =\int_{1}^{\infty} \frac{d t}{(a t+b)(a(t+1)+b)}+\int_{1^{-}}^{\infty} \frac{d([t]-t)}{(a t+b)(a(t+1)+b)} \tag{2}\\
& =I_{1}+I_{2}
\end{align*}
$$

$$
\begin{align*}
I_{1} & =\frac{1}{a} \int_{1}^{\infty}\left(\frac{1}{a t+b}-\frac{1}{a t+b+a}\right) d t \\
& =\frac{1}{a^{2}}\left(\lim _{t \rightarrow \infty} \log \frac{a t+b}{a t+b+a}-\log \frac{a+b}{2 a+b}\right) \tag{3}\\
& =-\frac{1}{a^{2}} \log \frac{a+b}{2 a+b}
\end{align*}
$$

To deal with I_{2} we integrate by parts to get

$$
\begin{equation*}
I_{2}=\left.\frac{[t]-t}{(a t+b)(a t+b+a)}\right|_{1-} ^{\infty}-\int_{1}^{\infty} \frac{(t-[t])}{(a t+b)^{2}(a t+a+b)^{2}}\left(2 a^{2} t+a^{2}+2 a b\right) d t \tag{4}
\end{equation*}
$$

$$
=\frac{1}{(a+b)(2 a+b)}-\int_{1}^{\infty} \frac{(t-[t])\left(2 a^{2} t+a^{2}+2 a b\right)}{(a t+b)^{2}(a t+a+b)^{2}} d t
$$

If we now combine (1)-(4) we obtain

$$
\begin{aligned}
& \int_{1}^{\infty} \frac{(t-[t])\left(2 a^{2} t+a^{2}+2 a b\right)}{(a t+b)^{2}(a t+a+b)^{2}} d t=-\frac{1}{a^{2}(a+b)}-\frac{1}{a^{3}} \log \frac{a+b}{2 a+b}+\frac{1}{a(a+b)(2 a+b)} \\
& \quad=-\frac{1}{a^{3}} \log \frac{a+b}{2 a+b}-\frac{1}{a^{2}(2 a+b)}
\end{aligned}
$$

If we take $a=1$ and $b=0$ we get the desired result.
28. [1990, 141] Proposed by Russell Euler, Northwest Missouri State University, Maryville, Missouri.

Let $A B C$ be an equilateral triangle with segment lengths as indicated in the diagram. Determine s as a function of a, b and c.

Solution by the proposer.
Using the law of sines in triangle $B C O$ gives

$$
\frac{\sin \left(60^{\circ}-\phi\right)}{b}=\frac{\sin \left(60^{\circ}-\theta\right)}{c}
$$

which simplifies to

$$
\begin{equation*}
b \sin \theta-c \sin \phi=\sqrt{3}(b \cos \theta-c \cos \phi) . \tag{1}
\end{equation*}
$$

However, from triangles $A B O$ and $A C O$,

$$
\begin{equation*}
\cos \theta=\frac{-a^{2}+b^{2}+s^{2}}{2 b s} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\cos \phi=\frac{-a^{2}+c^{2}+s^{2}}{2 c s} \tag{3}
\end{equation*}
$$

Substituting (2) and (3) into (1) yields

$$
\begin{equation*}
b \sin \theta-c \sin \phi=\frac{\sqrt{3}\left(b^{2}-c^{2}\right)}{2 s} \tag{4}
\end{equation*}
$$

Since the area of triangle $A B C$ is the sum of the areas of triangles $A B O, A C O$ and $B C O$,

$$
\begin{equation*}
b \sin \theta+b \sin \left(60^{\circ}-\theta\right)+c \sin \phi=\frac{\sqrt{3} s}{2} \tag{5}
\end{equation*}
$$

Adding equations (4) and (5) and simplifying with the use of (2) leads to

$$
\begin{equation*}
\sqrt{3} b \sin \theta=\frac{s^{2}+a^{2}+b^{2}-2 c^{2}}{2 s} \tag{6}
\end{equation*}
$$

Now, square equation (6), replace $\sin ^{2} \theta$ with $1-\cos ^{2} \theta$ and use (2) to arrive at

$$
s^{4}-\left(a^{2}+b^{2}+c^{2}\right) s^{2}+a^{4}+b^{4}+c^{4}-a^{2} b^{2}-a^{2} c^{2}-b^{2} c^{2}=0
$$

which has

$$
s=\sqrt{\frac{a^{2}+b^{2}+c^{2}+\sqrt{-3\left(a^{4}+b^{4}+c^{4}-2 a^{2} b^{2}-2 a^{2} c^{2}-2 b^{2} c^{2}\right)}}{2}}
$$

as the desired root.

