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In 1951 one of the greatest mathematicians of this century, Hermann Weyl, delivered

a series of remarkable lectures on symmetry at Princeton University. These lectures were

designed for a very wide audience: faculty and students, mathematicians and nonmathe-

maticians, people interested in natural sciences, and individuals interested in humanities.

Weyl’s captivating story, published in 1952 [1], contributed greatly to the understanding of

the importance of the mathematical idea of symmetry for both mathematical and physical

sciences. In 1967 another interesting book on symmetry appeared [2]. Its authors pre-

sented a beautiful and clear exposition of the theory of symmetric polynomials and their

applications to such diverse algebraic topics as solving nonlinear equations and systems of

equations, proving inequalities and identities, factoring complicated expressions, rational-

izing the denominator, etc. Some observations on the use of symmetry in the study of

functions have been made in [3]. This study was based on geometric methods and linear

transformations. The purpose of the present paper is to survey some applications of sym-

metry to certain topics of algebra, analytic geometry, and calculus to exhibit the power of

symmetry as an important analytical tool.

1. Solving Systems of Equations.

Consider first a Chicago All-Star Mathematics Problem: find all ordered pairs (x, y)

for which

(1)

{

x2 + y2 + x+ y = 6

xy + x+ y = −1 .

This is an example of a symmetric system of equations. A system of two equations

P (x, y) = 0, Q(x, y) = 0

is called symmetric if P (x, y) and Q(x, y) are symmetric polynomials in two variables, that

is,

P (x, y) = P (y, x), Q(x, y) = Q(y, x) .

130



Symmetric systems are usually solved by means of the substitutions

(2) x+ y = s, xy = p .

For system (1) this results in

x2 + y2 = (x+ y)2 − 2xy = s2 − 2p ,

and (1) is changed to the form

s2 + s− 2p = 6, s+ p = −1 ,

whence s2 + 3s− 4 = 0 and s1 = 1, s2 = −4. Therefore, p1 = −2, p2 = 3, which produces

two simple systems

{

x+ y = 1

xy = −2
and

{

x+ y = −4

xy = 3 .

From here, the solutions of the original system are determined: (−1, 2); (2,−1); (−1,−3);

(−3,−1).

To find the real solutions of the system

(3)

{

x+ y = 1

x4 + y4 = 7 ,

substitutions (2) are again utilized, resulting in

x4 + y4 =
(

x2 + y2
)2 − 2x2y2 =

(

s2 − 2p
)2 − 2p2

= s4 − 4ps2 + 2p2 .

Hence,

s = 1, 2p2 − 4s2p+ s4 = 7,
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that is,

p2 − 2p− 3 = 0, p1 = 3, p2 = −1 .

This leads to the systems

{

x+ y = 1

xy = 3
and

{

x+ y = 1

xy = −1 ,

the first of which has no real solution. The second system gives the equation u2−u−1 = 0,

whose solutions are u = (1±
√
5)/2. Therefore, system (3) has two real solutions:

x = (1 +
√
5)/2

y = (1−
√
5)/2

and
x = (1 −

√
5)/2

y = (1 +
√
5)/2 .

2. Deriving the Quadratic Formula Without Completing the Square.

The quadratic equation has various solution methods, three of which are explained in

typical algebra courses. The simplest of these methods, but one that is not always easily

applicable, is by factoring. To factor some complicated trinomials, the student must resort

to trial and error. Nonetheless, after solving a sufficient number of equations by factoring,

students are at least convinced that the typical quadratic equation has two solutions. Ex-

perience shows that this is just the right moment to take the next step, proceeding not to

the method of completing the square, but in a quite different direction [4–7]. Namely, let m

and n be the solutions of the equation ax2 + bx+ c = 0, a 6= 0; then we have the following

two identities

(4) am2 + bm+ c = 0 and an2 + bn+ c = 0 .

Subtracting the second from the first gives

a
(

m2 − n2
)

+ b(m− n) = 0 ,

or

(m− n)

(

m+ n+
b

a

)

= 0 .
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Assume m 6= n, then

(5) m+ n = − b

a
.

Next substitute b = −a(m+n) in one of the identities (4) and obtain am2−am(m+n)+c = 0,

which implies

(6) mn =
c

a
.

Relations (5) and (6) are the well-known Vieta formulas for the sum and product of solutions

of the quadratic equation. The left-hand sides of (5) and (6) are the same symmetric

polynomials as those in substitutions (2). Being the simplest of all symmetric polynomials,

they are called elementary symmetric polynomials. A remarkable theorem from [2] says

that each symmetric polynomial in x and y can be expressed as a polynomial in variables

s = x + y and p = xy. Francois Vieta (1540–1603) had discovered relationships similar to

(5) and (6) between the solutions and coefficients of higher-degree equations. To derive the

quadratic formula without completing the square, we square (5), then multiply (6) by 4,

and subtract the second result from the first. Hence,

(m− n)2 =
b2

a2
− 4c

a
=

b2 − 4ac

a2
.

Taking the square root yields

(7) m− n = ±
√

b2 − 4ac/a .

It remains to solve the system of linear equations (5) and (7), to obtain the formula

(8) x =
(

−b±
√

b2 − 4ac
)

/2a

for the solutions of the quadratic equation ax2 + bx+ c = 0. Note that only one sign need

be taken, either positive or negative, in (7) to obtain (8). This helps students to understand

why the double sign appears in the quadratic formula. Finally, the Vieta formulas hold true

also for m = n.
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3. Proving Inequalities.

Inequalities hold a prominent position in many topics of algebra and calculus, and

some important inequalities include only symmetric functions. Note that the inequality

(x− y)2 ≥ 0 (for all real x and y) can be changed to x2 + y2 ≥ 2xy. It is natural to apply

here substitutions (2) which proved so successful in solving symmetric systems of equations.

Since x2 + y2 = s2 − 2p, we get the inequality

(9) s2 ≥ 4p

which is basic for proving symmetric inequalities in two variables.

To prove the inequality

x3 + y3

2
≥
(

x+ y

2

)3

, for x, y ≥ 0

we write it in the form

(x + y)
(

x2 − xy + y2
)

2
≥
(

x+ y

2

)3

and use substitutions (2) to obtain

s
(

s2 − 3p
)

/2 ≥ s3/8 .

Since x, y ≥ 0, this inequality is equivalent to s2 − 3p ≥ s2/4, that is, to s2 ≥ 4p. This

proves the original inequality for it is equivalent to (9).

Transforming the inequality

8
(

x4 + y4
)

≥ (x + y)4

by means of (2) gives

x4 + y4 =
(

x2 + y2
)2 − 2x2y2 =

(

s2 − 2p
)2 − 2p2 = s4 − 4s2p+ 2p2
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and

8s4 − 32s2p+ 16p2 ≥ s4, 7s4 − 32s2p+ 16p2 ≥ 0,

that is,
(

s2 − 4p
)(

7s2 − 4p
)

≥ 0. Since s2 ≥ 4p, then all the more 7s2 ≥ 4p, which proves

the original inequality. In particular, if x+ y = 1, then x4 + y4 ≥ 1/8.

4. Deriving the Equations of the Ellipse and Hyperbola.

Some radical equations can be solved by reduction to systems of equations similar to

those in Section 1. For example, to solve the equation

x+
√

17− x2 + x
√

17− x2 = 9 ,

use y =
√
17− x2 and get a symmetric system of equations

x+ y + xy = 9, x2 + y2 = 17,

which is changed by substitutions (2) to the form

s+ p = 9, s2 − 2p = 17 .

Eliminating p results in s2+2s−35 = 0, s = 5, s = −7, from which p = 4, p = 16. According

to Vieta’s formulas (5) and (6), the system of equations s = 5, p = 4 is equivalent to the

quadratic equation u2 − 5u+ 4 = 0, whose solutions are u = 1, u = 4. Hence, x = 1, y = 4

or x = 4, y = 1, that is, the original equation has solutions x = 1 and x = 4. There are

no other real solutions because the system s = −7, p = 16 is equivalent to the equation

u2 + 7u+ 16 = 0 which has complex roots.

The above technique of solving radical equations can also be used very effectively in

the derivation of the equations of the ellipse and hyperbola [8]. Let F1(−c, 0) and F2(c, 0)

be the foci of the ellipse centered at the origin, and let P (x, y) be any point on the ellipse.

Then by the definition of an ellipse,

(10) d1 + d2 = 2a ,

where d1 = F1P and d2 = F2P . Using the distance formula,

(11) d21 = (x+ c)2 + y2 , d22 = (x− c)2 + y2 ,

results in

(12) d2
1
− d2

2
= 4cx .
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From (10) and (12), it follows that

(13) d1 − d2 = 2cx/a .

Solving (10) and (13) produces the formulas

(14) d1 = a+
c

a
x , d2 = a− c

a
x .

These are important in their own right since they give rational expressions for the distances

from any point of the ellipse to its foci. Combining (11) and (14), we have

(x+ c)2 + y2 =
(

a+
c

a
x
)2

, (x− c)2 + y2 =
(

a− c

a
x
)2

.

Simplifying either equation yields

(

1− c2

a2

)

x2 + y2 = a2 − c2

and substituting a2 − c2 = b2, we obtain the equation of the ellipse x2/a2 + y2/b2 = 1. In

a similar manner, the equation of the hyperbola can be derived.

5. Miscellaneous Examples.

Even functions (symmetric about the y-axis) and odd functions (symmetric about the

origin) are important in algebra and calculus. Thus, for any even function f(x) we have

∫

a

−a

f(x)dx = 2

∫

a

0

f(x)dx ,

and for any odd function g(x),

∫

a

−a

g(x)dx = 0 .

The derivative (if it exists) of an even function is odd, and the derivative of an odd function

is even. Indeed, every even function satisfies f(−x) = f(x), and differentiating this identity
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gives −f ′(−x) = f ′(x), which implies that f ′(x) is an odd function. For an odd function

we have g(−x) = −g(x), hence g′(−x) = g′(x), which means that g′(x) is even. Some other

types of symmetry arise in geometry, algebra, and calculus. In particular, “perimeter =

area” problems lead to an interesting class of functions whose graphs are symmetric about

the line y = x. These functions coincide with their own inverses, f(x) = f−1(x), and are

called involutions [9, 10]. Examples of involutions include y = x, y = a − x, y = 1/x,

y = 3
√
a− x3. Consider two integrals

C =

∫ π

2

0

cos2 xdx , S =

∫ π

2

0

sin2 xdx .

Integrating the identity cos2 x + sin2 x = 1 between 0 and π/2 yields C + S = π/2. Fur-

thermore, the substitution y = (π/2)− x is an involution, which maps the interval [0, π/2]

onto itself and transforms either integral to the other. Hence, C = S = π/4.
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