NOTE ON THE FIRST FUNDAMENTAL THEOREM FOR RIEMANN-STIELTJES INTEGRALS

Robert Cacioppo
Northeast Missouri State University

A Riemann-Stieltjes integral is of the form $\int_{a}^{b} f d \alpha$. The functions f and α are called the integrand and integrator, respectively. If the integral exists, we say $f \in R(\alpha)$ on $[a, b]$. We will always assume the integrator is of bounded variation (a sufficient condition for this is that α be monotonic, although this is not necessary). This insures that if $f \in R(\alpha)$ on $[a, b]$ then $f \in R(\alpha)$ on $[a, x]$ also, for all $x \in[a, b]$. Thus the function $F(x)=\int_{a}^{x} f d \alpha$ is well-defined on $[a, b]$. The special case of the Riemann integral occurs when $\alpha(x)=x$.

The first fundamental theorem of calculus for the Riemann-Stieltjes integral applies when the integrator is monotonic on $[a, b]$. In this case,

$$
\frac{d}{d x} \int_{a}^{x} f d \alpha=f(x) \alpha^{\prime}(x)
$$

for each $x \in(a, b)$ at which f is continuous and α^{\prime} exists. Thus for Riemann integrals, the only requirement is the continuity of f at x.

The requirement that α be monotonic can be dropped if α^{\prime} is continuous on $[a, b]$. In this case, the Riemann-Stieltjes integral reduces to a Riemann integral: $\int_{a}^{x} f d \alpha=\int_{a}^{x} f \alpha^{\prime}$. Thus the only requirement for the differentiability of this integral at x is the continuity of f at x. For proofs of these results, see [1].

The fundamental theorem can be easily extended to include all integrators α of bounded variation on the interval $[a, b]$ for which
(1) α^{\prime} exists on (a, b), and
(2) for each $x \in(a, b)$, there is a neighborhood of x on which α^{\prime} is bounded.

For instance, the fundamental theorem applies, even at $x=0$, with the integrator

$$
\alpha(x)= \begin{cases}x^{2} \sin \frac{1}{x}, & \text { if } x \neq 0 \\ 0, & \text { if } x=0\end{cases}
$$

To prove the extended version, assume for some neighborhood of x that $\alpha=\beta+\gamma$ where β and γ are monotonic and differentiable at x. The extended version now follows from the monotonic version, using the linearity of integration with respect to a sum of integrators.

To complete the proof, given $x \in(a, b)$, choose a neighborhood B of x and constant M such that $M \geq\left|\alpha^{\prime}(t)\right|$ for all $t \in B$. On B, define $\beta(t)=M t$ and $\gamma=\alpha-\beta$. Now γ is decreasing on B since if $t_{1}<t_{2}$ then, by the Mean Value Theorem [1],

$$
\begin{aligned}
\gamma\left(t_{1}\right)-\gamma\left(t_{2}\right) & =\alpha^{\prime}(c)\left(t_{1}-t_{2}\right)-M\left(t_{1}-t_{2}\right) \\
& =\left(\alpha^{\prime}(c)-M\right)\left(t_{1}-t_{2}\right) \geq 0
\end{aligned}
$$

for some $c \in\left(t_{1}, t_{2}\right)$.
Reference

1. T. M. Apostol, Mathematical Analysis, 2nd edition, Addison-Wesley, 1975.
