MAXIMIZING THE SURFACE AREA OF AN

N-DIMENSIONAL UNIT SPHERE

Russell Euler
Northwest Missouri State University

Using the Dirichlet integral in n-dimensional Euclidean space, one can show that the volume of an n-dimensional sphere with radius r is given by

$$
V_{n}(r)=\frac{\pi^{\frac{n}{2}} r^{n}}{\Gamma\left(\frac{n}{2}+1\right)},
$$

where n is a positive integer. Of course, 'volume' V_{1} is the length of the interval $[-r, r]$ and 'volume' V_{2} is the area of the circle with radius r. So, $V_{1}(r)=2 r$ and $V_{2}(r)=\pi r^{2}$.

The surface area of an n-dimensional sphere with radius r is given by

$$
\begin{aligned}
S_{n}(r) & =V_{n}^{\prime}(r) \\
& =\frac{n \pi^{\frac{n}{2}} r^{n-1}}{\frac{n}{2} \Gamma\left(\frac{n}{2}\right)} \\
& =\frac{2 \pi^{\frac{n}{2}} r^{n-1}}{\Gamma\left(\frac{n}{2}\right)} .
\end{aligned}
$$

In [1], it was shown that $V_{n}(1)$ has a maximum value when $n=5$. The purpose of this paper is to show that $S_{n}=S_{n}(1)$ attains a maximum value for $n=7$. This will be accomplished by showing that
(a) $S_{7}>S_{6}>S_{5}>S_{4}>S_{3}>S_{2}>S_{1}$ and
(b) $\left\{S_{n}\right\}_{n=7}^{\infty}$ is a decreasing sequence.

Using Table 1, it is easy to verify (a).

n	S_{n}	Approximate value of S_{n}
1	2	2
2	2π	6.283
3	4π	12.566
4	$2 \pi^{2}$	19.739
5	$8 \pi^{2} / 3$	26.319
6	π^{3}	31.006
7	$16 \pi^{3} / 15$	33.073
8	$\pi^{4} / 3$	32.470
9	$32 \pi^{4} / 105$	29.687

Table 1
Before proofing (b), notice that

$$
\begin{align*}
S_{n+1} & =\frac{2 \pi^{\frac{n+1}{2}}}{\Gamma\left(\frac{n+1}{2}\right)} \\
& =\frac{\sqrt{\pi} \Gamma\left(\frac{n}{2}\right)}{\Gamma\left(\frac{n+1}{2}\right)} S_{n} . \tag{1}
\end{align*}
$$

To prove (b), it will be shown by mathematical induction that
(i) $S_{2 n+1}>S_{2 n+2}$ for integers $n \geq 3$ and
(ii) $S_{2 n}>S_{2 n+1}$ for integers $n \geq 4$.

From Table 1, inequality (i) is valid for $n=3$. For the induction hypothesis, assuming that $S_{2 k+1}>S_{2 k+2}$ for some integer $k \geq 3$ is equivalent to assuming that

$$
\Gamma(k+1)>\sqrt{\pi} \Gamma\left(\frac{2 k+1}{2}\right) .
$$

Now, from (1)

$$
\begin{aligned}
\frac{S_{2 k+3}}{S_{2 k+4}} & =\frac{\Gamma(k+2)}{\sqrt{\pi} \Gamma\left(\frac{2 k+3}{2}\right)} \\
& =\frac{(k+1) \Gamma(k+1)}{\left(\frac{2 k+1}{2}\right) \sqrt{\pi} \Gamma\left(\frac{2 k+1}{2}\right)} \\
& >\frac{2 k+2}{2 k+1}>1
\end{aligned}
$$

So, (i) has been verified by mathematical induction.
Again, from Table 1, (ii) holds for $n=4$. Assume that $S_{2 k}>S_{2 k+1}$ for some $k \geq 4$. From (1), this assumption is equivalent to

$$
\Gamma\left(\frac{2 k+1}{2}\right)>\sqrt{\pi} \Gamma(k)
$$

for some $k \geq 4$. Hence,

$$
\begin{aligned}
\frac{S_{2 k+2}}{S_{2 k+3}} & =\frac{\Gamma\left(\frac{2 k+3}{2}\right)}{\sqrt{\pi} \Gamma(k+1)} \\
& =\frac{\left(\frac{2 k+1}{2}\right) \Gamma\left(\frac{2 k+1}{2}\right)}{\sqrt{\pi} k \Gamma(k)} \\
& >\frac{2 k+1}{2 k}>1
\end{aligned}
$$

Hence, inequality (ii) holds for all integers $n \geq 4$. This completes the proof of (b).

Reference

1. R. Salgia, "Volume of an n-Dimensional Unit Sphere," Pi Mu Epsilon Journal, 2 (Spring 1983), 496-501.
