A NOTE ON LOWER NEAR FRATTINI SUBGROUPS

Kandasamy Muthuvel

University of Wisconsin-Oshkosh

Theorem 1 in [1] reads, "Let H be a normal subgroup of a group G such that the order of H is prime. Let $\lambda(G)$ denote the set of all non-near generators of G. Then $\lambda(G) \cap H = \{1\}$ if and only if G nearly splits over H." The purpose of this note is to show that Theorem 1 in [1] may be improved as follows: If H is a normal subgroup of a group G and H is of prime order, more generally, if H is a finite cyclic normal subgroup of a group G, then $H \subseteq \lambda(G)$ and G does not nearly split over H. We also prove that if the condition "H is finite" is replaced by "H is infinite" in the above statement, then $\lambda(G) \cap H = \{1\}$ if and only if G nearly splits over H.

We first recall some definitions (see [1] or [2]).

<u>Definition 1</u>. An element g of a group G is a non-near generator of G if $S \subseteq G$ and |G| < g, S > | is finite implies |G| < S > | is finite. The set of all non-near generators of G, denoted by $\lambda(G)$, is called the lower near Frattini subgroup of G.

<u>Definition 2</u>. Let H be a normal subgroup of a group G. We say that G nearly splits over H if there exists a subgroup K of G such that |G:K| is infinite, |G:HK| is finite and

$$\bigcap_{g \in G} g^{-1}(H \cap K)g = \{1\}.$$

<u>Lemma 1</u>. If S is a subset of a group G and x is an element of G such that |G| < S > | is infinite and < x > is a finite normal subgroup of G, then |G| < h, S > | is infinite for every $h \in < x >$.

<u>Proof</u>. Let $g \in G$ and |x| = n. Then

$$g < x, S >= g < x > < S >= \bigcup_{1 \le i \le n} gx^i < S > .$$

That is, any left coset of $\langle x, S \rangle$ in G is a finite union of left cosets of $\langle S \rangle$ in G and hence if $|G := \langle x, S \rangle |$ is finite, then G is a finite union of left cosets of $\langle S \rangle$ in G (i.e. |G :< S > | is finite). Thus |G :< x, S > | is infinite. Now let $h \in < x >$. Then $h = x^m$ for some positive integer m. Since $< x, S > \supseteq < x^m, S >$ and |G :< x, S > | is infinite, $|G :< x^m, S > |$ is infinite. This completes the proof.

<u>Proposition 1</u>. If H is a finite cyclic normal subgroup of a group G, then $H \subseteq \lambda(G)$ and G does not nearly split over H.

<u>Proof.</u> If $H \not\subseteq \lambda(G)$, then there exists an h in H such that h is not in $\lambda(G)$. $h \notin \lambda(G)$ implies that there exists a subset S of G such that |G :< S > | is infinite and |G :< h, S > |is finite. This is impossible by Lemma 1. Let $H = \langle x \rangle$. If G nearly splits over H, then there exists a subgroup K of G such that |G : HK| = |G :< x, K > | is finite and |G : K|is infinite. Again by Lemma 1, this is impossible.

<u>Remark 1</u>. It is interesting to note that the proof of part 1 of Proposition 1 works for any subgroup H of G such that every cyclic subgroup of H is a finite normal subgroup of G.

<u>Lemma 2</u>. Let $\langle x \rangle$ be an infinite cyclic normal subgroup of a group G. If S is a subset of G such that $|G| \langle S \rangle |$ is infinite and $|G| \langle x, S \rangle |$ is finite, then $\langle x \rangle \cap \langle S \rangle = \{1\}$.

<u>Proof.</u> Suppose $\langle x \rangle \cap \langle S \rangle \neq \{1\}$. Then there exists a smallest positive integer n such that $x^n \in \langle x \rangle \cap \langle S \rangle$. Hence

$$< x > < S > = \bigcup_{1 \le i \le n} x^i < S > .$$

This together with the hypothesis $|G : \langle x, S \rangle|$ is finite imply that G is a finite union of left cosets of $\langle S \rangle$ in G, which contradicts that $|G : \langle S \rangle|$ is infinite. Thus $\langle x \rangle \cap \langle S \rangle = \{1\}.$

<u>Theorem 1</u>. Let *H* be an infinite cyclic normal subgroup of a group *G*. Then $\lambda(G) \cap H = \{1\}$ if and only if *G* nearly splits over *H*.

<u>Proof.</u> Let $H = \langle x \rangle$. If $\lambda(G) \cap H = \{1\}$, then there exists a subset S of G such that $|G : \langle S \rangle|$ is infinite and $|G : \langle x, S \rangle|$ is finite. By Lemma 2 and by using the fact that $\langle x, S \rangle = \langle x \rangle \langle S \rangle$, it can be easily seen that G nearly splits over H. Conversely, if G nearly splits over H, then there exists a subgroup K of G such that |G : K| is infinite and |G : HK| is finite. $|G : HK| = |G : \langle x, K \rangle|$ is finite implies that for $i \neq 0, |G : \langle x^i, K \rangle|$

is finite, because

$$\langle x, K \rangle = \langle x \rangle K \subseteq \bigcup_{-|i| \leq j \leq |i|} x^j \langle x^i, K \rangle$$
 .

Hence for $i \neq 0, x^i \notin \lambda(G)$. Thus $\lambda(G) \cap H = \{1\}$.

<u>Remark 2</u>. Theorem 1 in [1] reads: "Let H be a normal subgroup of a group G such that the order of H is prime. Then $\lambda(G) \cap H = \{1\}$ if and only if G nearly splits over H. In other words $\lambda(G) \cap H \neq \{1\}$ if and only if G does not nearly split over H." The proof of Theorem 1 in [1] is correct, but it follows from Proposition 1 that under the hypotheses of Theorem 1 in [1], we get a much stronger conclusion, namely $H \subseteq \lambda(G)$ and G does not nearly split over H.

References

- M. K. Azarian, "On Lower Near Frattini Subgroups and Nearly Splitting Groups," Missouri J. Math. Sci. 2 (1990), 18-25.
- J. B. Riles, "The Near Frattini Subgroups of Infinite Groups," J. of Algebra 12(1969), 155-171.