SOLUTIONS

No problem is ever permanently closed. Any comments, new solutions, or new insights on old problems are always welcomed by the problem editor.
28. [1990, 141 and insert; 1991, 43; 1991, 156-157] Proposed by Russell Euler, Northwest Missouri State University, Maryville, Missouri.

Let $A B C$ be an equilateral triangle with segment lengths as indicated in the diagram. Determine s as a function of a, b and c.

Choose a rectangular coordinate system such that A coincides with the origin and $A O$ lies in the first quadrant, forming a 30° angle with the positive x-axis. Let P be the reflection of the point O across the x-axis.

It isn't hard to see that $\angle P A B \cong \angle O A C$, and hence that $\triangle P A B \cong \triangle O A C$. Letting (x, y) be the coordinates of the point B, we have

$$
\begin{equation*}
\left(x-\frac{\sqrt{3}}{2} a\right)^{2}+\left(y-\frac{a}{2}\right)^{2}=b^{2} \tag{*}
\end{equation*}
$$

Also, since $P B \cong O C$,

$$
\left(x-\frac{\sqrt{3}}{2} a\right)^{2}+\left(y+\frac{a}{2}\right)^{2}=c^{2}
$$

We easily eliminate x, getting

$$
y=\frac{c^{2}-b^{2}}{2 a}
$$

From $(*)$, and the position of the point B, we have

$$
x=\frac{\sqrt{3}}{2} a+\left(b^{2}-\left(\frac{c^{2}-b^{2}}{2 a}-\frac{a}{2}\right)^{2}\right)^{\frac{1}{2}}
$$

From (*) we also have

$$
s^{2}=x^{2}+y^{2}=b^{2}-a^{2}+\sqrt{3} a x+a y
$$

Substituting the known values of x and y into this equation and simplifying,

$$
s=\left(\frac{1}{2}\left(a^{2}+b^{2}+c^{2}\right)+\frac{\sqrt{3}}{2}\left(2\left(a^{2} b^{2}+a^{2} c^{2}+b^{2} c^{2}\right)-\left(a^{4}+b^{4}+c^{4}\right)\right)^{\frac{1}{2}}\right)^{\frac{1}{2}}
$$

29. [1991, 44] Proposed by Jayanthi Ganapathy, University of Wisconsin-Oshkosh, Oshkosh, Wisconsin.

Define a sequence of real numbers $\left\{a_{n}\right\}_{n=1}^{\infty}$ as follows:

$$
\begin{aligned}
& a_{1}=5 \\
& a_{n}=\sqrt{a_{n-1}+\sqrt{2 a_{n-1}}}, \text { for } n \geq 2 .
\end{aligned}
$$

Does $\left\{a_{n}\right\}$ converge and if so, to what?
Solution by Robert L. Doucette, McNeese State University, Lake Charles, Louisiana.
It is not hard to show that

$$
a_{n}<a_{n-1} \quad \text { iff } 2<a_{n-1}\left(a_{n-1}-1\right)^{2} .
$$

Since decreasing sequences which are bounded below are convergent, to show that $\left\{a_{n}\right\}$ is convergent it suffices to show that $a_{n}>2, n \geq 1$. This follows by induction:

$$
a_{1}>2 \text { and } a_{n-1}>2 \text { implies } a_{n}=\sqrt{a_{n-1}+\sqrt{2 a_{n-1}}}>\sqrt{2+\sqrt{2 \cdot 2}}=2 .
$$

Letting

$$
a=\lim _{n \rightarrow \infty} a_{n}
$$

we have from the given recurrence relation

$$
a=\sqrt{a+\sqrt{2 a}}
$$

or

$$
(a-2)\left(a^{2}+1\right)=0
$$

Therefore, $\left\{a_{n}\right\}$ converges to 2 . Note that the only assumption on a_{1} is that it be greater than 2. For $0<a_{1}<2$, a similar argument shows that $\left\{a_{n}\right\}$ is an increasing sequence which is bounded above. The same conclusion follows.

Also solved by Joseph E. Chance, University of Texas-Pan American; N. J. Kuenzi, University of Wisconsin-Oshkosh; Kandasamy Muthuvel, University of Wisconsin-Oshkosh; Leonard L. Palmer, Southeast Missouri State University; and the proposer.
30. [1991, 44] Proposed by Russell Euler, Northwest Missouri State University, Maryville, Missouri.

In the diagram below, C is the center of a circle of radius r, T is a point of tangency, $A T=m$ and $B T=n$. Determine r as a function of m and n.

Solution I by the proposer.
Let segment lengths be labeled as indicated in the diagram.

Using the law of cosines in triangle $A B T$ gives

$$
\begin{equation*}
n^{2}=m^{2}+(2 r+q)^{2}-2 m(2 r+q) \cos A \tag{1}
\end{equation*}
$$

Also, in the right triangles $A D T$ and $B C T$,

$$
\begin{equation*}
\cos A=\frac{m}{2 r} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
r^{2}+n^{2}=(r+q)^{2} . \tag{3}
\end{equation*}
$$

Solving for q in equation (3) yields

$$
\begin{equation*}
q=-r+\sqrt{r^{2}+n^{2}} \tag{4}
\end{equation*}
$$

Substituting (2) and (4) into (1) and simplifying leads to

$$
\begin{equation*}
-2 r^{3}=\left(2 r^{2}-m^{2}\right) \sqrt{r^{2}+n^{2}} \tag{5}
\end{equation*}
$$

Squaring equation (5) and simplifying yields

$$
4\left(m^{2}-n^{2}\right) r^{4}+\left(4 m^{2} n^{2}-m^{4}\right) r^{2}-m^{4} n^{2}=0
$$

which has

$$
r=\sqrt{\frac{m^{2}\left(m^{2}-4 n^{2}\right)+m^{3} \sqrt{8 n^{2}+m^{2}}}{8\left(m^{2}-n^{2}\right)}}
$$

as the desired root.
Solution II by Robert L. Doucette, McNeese State University, Lake Charles, Louisiana.
Let D be the midpoint of segment $A T$ and let α be the measure of $\angle C A T$. Then the measure of $\angle B C T$ is 2α. Hence

$$
\tan \alpha=\frac{D C}{A D}=\frac{\sqrt{r^{2}-\frac{m^{2}}{4}}}{\frac{m}{2}}
$$

and

$$
\tan 2 \alpha=\frac{T B}{C T}=\frac{n}{r} .
$$

From the identity

$$
\tan 2 \alpha=\frac{2 \tan \alpha}{1-\tan ^{2} \alpha},
$$

we conclude that

$$
\frac{n}{r}=\frac{m \sqrt{4 r^{2}-m^{2}}}{m^{2}-2 r^{2}} .
$$

Hence r^{2} is a root of

$$
\begin{equation*}
4\left(n^{2}-m^{2}\right) x^{2}+\left(m^{4}-4 m^{2} n^{2}\right) x+m^{4} n^{2}=0 . \tag{*}
\end{equation*}
$$

Suppose $n>m$. Referring to the figure below, we may rotate the right angle $\angle C T B$ about the point T in such a way that the points C and C^{\prime} coincide.

As we did with r^{2}, we may show that r_{1}^{2} is a root of $(*)$. Clearly, $r_{1}>r$. With this we may use the quadratic formula to conclude that

$$
\begin{equation*}
r^{2}=\frac{m^{2}\left(4 n^{2}-m^{2}\right)-m^{3} \sqrt{m^{2}+8 n^{2}}}{8\left(n^{2}-m^{2}\right)} . \tag{**}
\end{equation*}
$$

When $n<m$, one of the roots of $(*)$ is negative. Hence ($* *$) holds in this case as well. Lastly, when $n=m$, equation (*) yields

$$
r=\frac{m}{\sqrt{3}} .
$$

31. [1991, 45] Proposed by Troy L. Hicks, University of Missouri-Rolla, Rolla, Missouri.

Put a topology t on $X=[0,1]$ such that:
(a) (X, t) is an H-closed space, and
(b) (X, t) has a countable open cover such that no proper subfamily covers X.
(c) Every open cover has a finite subcollection whose closures cover.

Reference

1. S. Willard, General Topology, Addison-Wesley, 1970.

Comments. A Hausdorff space is H-closed if it is closed in every Hausdorff space in which it can be embedded. This generalizes a property of compact Hausdorff spaces. In [1], an example is given of an H-closed space X that is not compact. Also, it is noted that a Hausdorff space is H-closed iff every open cover has a finite subcollection whose closures cover.

Solution by the proposer.
For $x \neq 0$, we use the usual neighborhoods of x. The neighborhoods of 0 are supersets of sets of the form $[0, \epsilon)^{*}$ where $[0, \epsilon)^{*}=[0, \epsilon)$ minus points of the form $\frac{1}{n}, n$ a positive integer, $0<\epsilon \leq 1 . X$ is obviously a Hausdorff space.

$$
\left(\frac{1}{2}, 1\right] \cup[0,1)^{*} \cup\left(\bigcup_{n=2}^{\infty}\left(\frac{1}{n+1}, \frac{1}{n-1}\right)\right)
$$

is a countable open cover of X such that no subfamily covers X. The first set is the only set containing 1 , the second set is the only set containing 0 , the third set is the only set containing $\frac{1}{2}$, etc..

To show that X is H-closed we verify condition (c). Suppose

$$
X=\bigcup_{\alpha \in A} G_{\alpha}
$$

where each G_{α} is open. Then we have

$$
\bigcup_{\alpha} G_{\alpha}=\left(\bigcup_{j} O_{j}\right) \cup\left(\bigcup_{k}\left[0, \epsilon_{k}\right)^{*}\right)
$$

where each O_{j} is open in the usual topology for X. Let

$$
\begin{gathered}
a=\operatorname{lub}_{k} \epsilon_{k} \\
a \notin \bigcup_{k}\left[0, \epsilon_{k}\right)^{*}
\end{gathered}
$$

implies $a \in O_{j}$ for some j, say $j=j^{\prime}$. Now

$$
a \in(c, d) \subset O_{j}
$$

for some c and d. Choose k^{\prime} such that

$$
\begin{gathered}
\epsilon_{k^{\prime}} \in(c, d) \subset O_{j^{\prime}} \\
c<\epsilon_{k^{\prime}}<a<d
\end{gathered}
$$

Note that

$$
\bigcup_{j} O_{j} \supset\left[\epsilon_{k^{\prime}}, 1\right]
$$

This is a covering of $\left[\epsilon_{k^{\prime}}, 1\right]$ by usual open sets, so there exists j_{1}, \cdots, j_{n} such that

$$
\bigcup_{k=1}^{n} O_{j_{k}} \supset\left[\epsilon_{k^{\prime}}, 1\right]
$$

Also,

$$
\operatorname{cl}\left[0, \epsilon_{k^{\prime}}\right)^{*}=\left[0, \epsilon_{k^{\prime}}\right]
$$

Hence

$$
\operatorname{cl}\left[0, \epsilon_{k^{\prime}}\right)^{*} \cup\left(\bigcup_{k=1}^{n} O_{j_{k}}\right) \supset X
$$

and X is H-closed.
32. [1991, 45] Proposed by Curtis Cooper and Robert E. Kennedy, Central Missouri State University, Warrensburg, Missouri.

Let

$$
g(x)=\frac{45 x+1991}{x+45}
$$

Evaluate

$$
\lim _{k \rightarrow \infty} \underbrace{g(g(\cdots(g}_{k}(0)) \cdots))
$$

Solution I by Leonard L. Palmer, Southeast Missouri State University, Cape Girardeau, Missouri.

Let

$$
f(x)=\frac{b x+a}{x+b}=b+\frac{a-b^{2}}{b+x}
$$

Then

$$
f(f(x))=b+\frac{a-b^{2}}{b+b+\frac{a-b^{2}}{x+b}}=b+\frac{a-b^{2}}{2 b+\frac{a-b^{2}}{x+b}}
$$

and

$$
f(f(f(x)))=b+\frac{a-b^{2}}{2 b+\frac{a-b^{2}}{2 b+\frac{a-b^{2}}{2 b+\frac{a-b^{2}}{b+x}}} ~ . ~} .
$$

Let

$$
\alpha=\lim _{n \rightarrow \infty} \underbrace{f(f(\cdots(f(0)) \cdots))=b+\frac{a-b^{2}}{2 b+\frac{a-b^{2}}{2 b+\frac{a-b^{2}}{2 b+\cdots}}}}_{n}
$$

Then

$$
\alpha+b=2 b+\frac{a-b^{2}}{b+\alpha}
$$

and

$$
(\alpha+b)^{2}=2 b(\alpha+b)+a-b^{2}
$$

So $\alpha^{2}=a$, and $\alpha=\sqrt{a}$.
If $b=45$ and $a=1991$, then $g(x)=f(x)$ and $\alpha=\sqrt{1991}$.
Solution II by Robert L. Doucette, McNeese State University, Lake Charles, Louisiana.
Let

$$
x_{k}=\underbrace{g(g(\cdots(g}_{k}(0)) \cdots)) .
$$

For $k \geq 1, x_{k+1}=g\left(x_{k}\right)$ and $x_{k}>0$. For $x>0$,

$$
g^{\prime}(x)=\frac{34}{(x+45)^{2}}<\frac{34}{45^{2}}
$$

Let $x^{*}=\sqrt{1991}$, the positive root of $g(x)=x$. By the Mean Value Theorem, there is a $y>0$ such that

$$
\left|x_{k+1}-x^{*}\right|=\left|g\left(x_{k}\right)-g\left(x^{*}\right)\right| \leq\left|g^{\prime}(y)\right|\left|x_{k}-x^{*}\right|
$$

Hence,

$$
\left|x_{k+1}-x^{*}\right| \leq \frac{34}{45^{2}}\left|x_{k}-x^{*}\right|
$$

By induction we may show that, for $k \geq 0$,

$$
\left|x_{k+1}-x^{*}\right| \leq\left(\frac{34}{45^{2}}\right)^{k}\left|x_{1}-x^{*}\right|
$$

Since

$$
\begin{gathered}
\left(\frac{34}{45^{2}}\right)^{k} \rightarrow 0 \text { as } k \rightarrow \infty \\
\lim _{k \rightarrow \infty} x_{k}=x^{*}=\sqrt{1991}
\end{gathered}
$$

Solution III by Kandasamy Muthuvel, University of Wisconsin-Oshkosh, Oshkosh, Wisconsin.

Since

$$
\begin{gathered}
g(x)=45-\frac{34}{x+45} \\
g^{\prime}(x)=\frac{34}{(x+45)^{2}}
\end{gathered}
$$

It is easy to see that
(*)

$$
g \text { is increasing on }[0, \infty)
$$

and

$$
g(x)<45 \text { for each } x \geq 0
$$

Let

$$
u_{k}(0)=\underbrace{g(g(\cdots(g}_{k}(0)) \cdots))
$$

Since $0<g(0)=u_{1}(0)$, by $(*)$,

$$
g(0)=u_{1}(0)<g(g(0))=u_{2}(0)
$$

and hence by induction $\left\{u_{k}(0)\right\}$ is an increasing sequence of positive real numbers bounded above by 45 . Now let

$$
L=\lim _{k \rightarrow \infty} u_{k}(0)
$$

Then $0<L \leq 45$. Since $u_{k+1}(0)=g\left(u_{k}(0)\right)$ and g is continuous on $[0, \infty)$,

$$
\begin{aligned}
L & =\lim _{k \rightarrow \infty} u_{k+1}(0) \\
& =g\left(\lim _{k \rightarrow \infty} u_{k}(0)\right) \\
& =g(L) \\
& =\frac{45 L+1991}{L+45}
\end{aligned}
$$

This implies that $L=\sqrt{1991}$.
Remark. It is interesting to note that in the above problem if 45 is replaced by a positive number a and 1991 is replaced by a positive number b, then the value of the limit is \sqrt{b}.

Composite Solution IV by Joseph E. Chance, University of Texas-Pan American, Edinburg, Texas and Jayanthi Ganapathy, University of Wisconsin-Oshkosh, Oshkosh, Wisconsin.

It is not too hard to show that if $x<\sqrt{1991}$, then

$$
\begin{equation*}
g(x)<\sqrt{1991} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
x<g(x) \tag{2}
\end{equation*}
$$

The problem can be restated as follows:
Define $\left\{a_{k}\right\}$ by

$$
a_{1}=g(0)=\frac{1991}{45}
$$

and

$$
a_{k+1}=g\left(a_{k}\right) \text { for } k=1,2, \ldots
$$

Prove that

$$
\lim _{k \rightarrow \infty} a_{k}
$$

exists and find the limit.
Mathematical induction and (1) show that $a_{k}<\sqrt{1991}$ for $k \geq 1$. Also, (2) shows that $a_{k}<a_{k+1}$ for $k \geq 1$. Thus $\left\{a_{k}\right\}$ is bounded above and monotonically increasing, so it must have a limit. Let

$$
a=\lim _{k \rightarrow \infty} a_{k}
$$

To find a, start with $a_{k+1}=g\left(a_{k}\right)$ and let $k \rightarrow \infty$. Thus, $a=g(a)$ or $a=\sqrt{1991}$. Therefore,

$$
\lim _{k \rightarrow \infty} a_{k}=\sqrt{1991}
$$

Also solved by N. J. Kuenzi, University of Wisconsin-Oshkosh and the proposers.

