
SOLUTIONS

No problem is ever permanently closed. Any comments, new solutions, or new insights
on old problems are always welcomed by the problem editor.

28. [1990, 141 and insert; 1991, 43; 1991, 156–157] Proposed by Russell Euler, North-
west Missouri State University, Maryville, Missouri.

Let ABC be an equilateral triangle with segment lengths as indicated in the diagram.
Determine s as a function of a, b and c.
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Solution by Robert L. Doucette, McNeese State University, Lake Charles, Louisiana.

Choose a rectangular coordinate system such that A coincides with the origin and
AO lies in the first quadrant, forming a 30◦ angle with the positive x-axis. Let P be the
reflection of the point O across the x-axis.

It isn’t hard to see that 6 PAB ∼= 6 OAC, and hence that 4PAB ∼= 4OAC. Letting
(x, y) be the coordinates of the point B, we have

(∗)
(
x−
√

3

2
a

)2

+

(
y − a

2

)2

= b2 .

Also, since PB ∼= OC, (
x−
√

3

2
a

)2

+

(
y +

a

2

)2

= c2 .

We easily eliminate x, getting

y =
c2 − b2

2a
.

From (∗), and the position of the point B, we have

x =

√
3

2
a+

(
b2 −

(
c2 − b2

2a
− a

2

)2) 1
2

.
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From (∗) we also have

s2 = x2 + y2 = b2 − a2 +
√

3ax+ ay .

Substituting the known values of x and y into this equation and simplifying,

s =

(
1

2

(
a2 + b2 + c2

)
+

√
3

2

(
2
(
a2b2 + a2c2 + b2c2

)
−
(
a4 + b4 + c4

)) 1
2

) 1
2

.

29. [1991, 44] Proposed by Jayanthi Ganapathy, University of Wisconsin-Oshkosh,
Oshkosh, Wisconsin.

Define a sequence of real numbers {an}∞n=1 as follows:

a1 = 5 ,

an =

√
an−1 +

√
2an−1 , for n ≥ 2 .

Does {an} converge and if so, to what?

Solution by Robert L. Doucette, McNeese State University, Lake Charles, Louisiana.

It is not hard to show that

an < an−1 iff 2 < an−1(an−1 − 1)2 .

Since decreasing sequences which are bounded below are convergent, to show that {an} is
convergent it suffices to show that an > 2, n ≥ 1. This follows by induction:

a1 > 2 and an−1 > 2 implies an =

√
an−1 +

√
2an−1 >

√
2 +
√

2 · 2 = 2 .

Letting
a = lim

n→∞
an ,

we have from the given recurrence relation

a =

√
a+
√

2a
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or
(a− 2)(a2 + 1) = 0 .

Therefore, {an} converges to 2. Note that the only assumption on a1 is that it be greater
than 2. For 0 < a1 < 2, a similar argument shows that {an} is an increasing sequence which
is bounded above. The same conclusion follows.

Also solved by Joseph E. Chance, University of Texas-Pan American; N. J. Kuenzi,
University of Wisconsin-Oshkosh; Kandasamy Muthuvel, University of Wisconsin-Oshkosh;
Leonard L. Palmer, Southeast Missouri State University; and the proposer.

30. [1991, 44] Proposed by Russell Euler, Northwest Missouri State University,
Maryville, Missouri.

In the diagram below, C is the center of a circle of radius r, T is a point of tangency,
AT = m and BT = n. Determine r as a function of m and n.
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Solution I by the proposer.

Let segment lengths be labeled as indicated in the diagram.

Using the law of cosines in triangle ABT gives

(1) n2 = m2 + (2r + q)2 − 2m(2r + q) cosA .

Also, in the right triangles ADT and BCT ,

(2) cosA =
m

2r
,

and

(3) r2 + n2 = (r + q)2 .

Solving for q in equation (3) yields

(4) q = −r +
√
r2 + n2 .

Substituting (2) and (4) into (1) and simplifying leads to

(5) −2r3 = (2r2 −m2)
√
r2 + n2 .
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Squaring equation (5) and simplifying yields

4(m2 − n2)r4 + (4m2n2 −m4)r2 −m4n2 = 0 ,

which has

r =

√
m2(m2 − 4n2) +m3

√
8n2 +m2

8(m2 − n2)

as the desired root.

Solution II by Robert L. Doucette, McNeese State University, Lake Charles, Louisiana.

Let D be the midpoint of segment AT and let α be the measure of 6 CAT . Then the
measure of 6 BCT is 2α. Hence

tanα =
DC

AD
=

√
r2 − m2

4

m
2

and

tan 2α =
TB

CT
=
n

r
.

From the identity

tan 2α =
2 tanα

1− tan2 α
,

we conclude that

n

r
=
m
√

4r2 −m2

m2 − 2r2
.

Hence r2 is a root of

(∗) 4(n2 −m2)x2 + (m4 − 4m2n2)x+m4n2 = 0 .
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Suppose n > m. Referring to the figure below, we may rotate the right angle 6 CTB
about the point T in such a way that the points C and C ′ coincide.

As we did with r2, we may show that r21 is a root of (∗). Clearly, r1 > r. With this we
may use the quadratic formula to conclude that

(∗∗) r2 =
m2(4n2 −m2)−m3

√
m2 + 8n2

8(n2 −m2)
.

When n < m, one of the roots of (∗) is negative. Hence (∗∗) holds in this case as well.
Lastly, when n = m, equation (∗) yields

r =
m√

3
.
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31. [1991, 45] Proposed by Troy L. Hicks, University of Missouri-Rolla, Rolla, Mis-
souri.

Put a topology t on X = [0, 1] such that:
(a) (X, t) is an H-closed space, and
(b) (X, t) has a countable open cover such that no proper subfamily covers X.
(c) Every open cover has a finite subcollection whose closures cover.

Reference

1. S. Willard, General Topology, Addison-Wesley, 1970.

Comments. A Hausdorff space is H-closed if it is closed in every Hausdorff space in
which it can be embedded. This generalizes a property of compact Hausdorff spaces. In
[1], an example is given of an H-closed space X that is not compact. Also, it is noted that
a Hausdorff space is H-closed iff every open cover has a finite subcollection whose closures
cover.

Solution by the proposer.

For x 6= 0, we use the usual neighborhoods of x. The neighborhoods of 0 are supersets
of sets of the form [0, ε)∗ where [0, ε)∗ = [0, ε) minus points of the form 1

n , n a positive
integer, 0 < ε ≤ 1. X is obviously a Hausdorff space.

(
1

2
, 1

]
∪ [0, 1)∗ ∪

( ∞⋃
n=2

(
1

n+ 1
,

1

n− 1

))

is a countable open cover of X such that no subfamily covers X. The first set is the only
set containing 1, the second set is the only set containing 0, the third set is the only set
containing 1

2 , etc..
To show that X is H-closed we verify condition (c). Suppose

X =
⋃
α∈A

Gα

where each Gα is open. Then we have

⋃
α

Gα =

(⋃
j

Oj

)
∪
(⋃

k

[0, εk)∗
)
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where each Oj is open in the usual topology for X. Let

a = lubkεk .

a /∈
⋃
k

[0, εk)∗

implies a ∈ Oj for some j, say j = j′. Now

a ∈ (c, d) ⊂ Oj ,

for some c and d. Choose k′ such that

εk′ ∈ (c, d) ⊂ Oj′ .

c < εk′ < a < d .

Note that ⋃
j

Oj ⊃ [εk′ , 1] .

This is a covering of [εk′ , 1] by usual open sets, so there exists j1, · · ·, jn such that

n⋃
k=1

Ojk ⊃ [εk′ , 1] .

Also,
cl[0, εk′)

∗ = [0, εk′ ] .

Hence

cl[0, εk′)
∗ ∪
( n⋃
k=1

Ojk

)
⊃ X

and X is H-closed.
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32. [1991, 45] Proposed by Curtis Cooper and Robert E. Kennedy, Central Missouri
State University, Warrensburg, Missouri.

Let

g(x) =
45x+ 1991

x+ 45
.

Evaluate

lim
k→∞

g(g(· · · (g︸ ︷︷ ︸
k

(0)) · · ·)) .

Solution I by Leonard L. Palmer, Southeast Missouri State University, Cape Girardeau,
Missouri.

Let

f(x) =
bx+ a

x+ b
= b+

a− b2

b+ x
.

Then

f(f(x)) = b+
a− b2

b+ b+ a−b2
x+b

= b+
a− b2

2b+ a−b2
x+b

and

f(f(f(x))) = b+
a− b2

2b+ a−b2
2b+ a−b2

2b+
a−b2

b+x

.

Let

α = lim
n→∞

f(f(· · · (f︸ ︷︷ ︸
n

(0)) · · ·)) = b+
a− b2

2b+ a−b2
2b+ a−b2

2b+···

.

Then

α+ b = 2b+
a− b2

b+ α
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and

(α+ b)2 = 2b(α+ b) + a− b2 .

So α2 = a, and α =
√
a.

If b = 45 and a = 1991, then g(x) = f(x) and α =
√

1991.

Solution II by Robert L. Doucette, McNeese State University, Lake Charles, Louisiana.

Let

xk = g(g(· · · (g︸ ︷︷ ︸
k

(0)) · · ·)) .

For k ≥ 1, xk+1 = g(xk) and xk > 0. For x > 0,

g′(x) =
34

(x+ 45)2
<

34

452
.

Let x∗ =
√

1991, the positive root of g(x) = x. By the Mean Value Theorem, there is a
y > 0 such that

|xk+1 − x∗| = |g(xk)− g(x∗)| ≤ |g′(y)||xk − x∗| .

Hence,

|xk+1 − x∗| ≤
34

452
|xk − x∗| .

By induction we may show that, for k ≥ 0,

|xk+1 − x∗| ≤
(

34

452

)k
|x1 − x∗| .

Since (
34

452

)k
→ 0 as k →∞ ,

lim
k→∞

xk = x∗ =
√

1991 .
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Solution III by Kandasamy Muthuvel, University of Wisconsin-Oshkosh, Oshkosh, Wis-
consin.

Since

g(x) = 45− 34

x+ 45
,

g′(x) =
34

(x+ 45)2
.

It is easy to see that

g is increasing on [0,∞)

and(∗)
g(x) < 45 for each x ≥ 0 .

Let
uk(0) = g(g(· · · (g︸ ︷︷ ︸

k

(0)) · · ·)) .

Since 0 < g(0) = u1(0), by (∗),

g(0) = u1(0) < g(g(0)) = u2(0)

and hence by induction {uk(0)} is an increasing sequence of positive real numbers bounded
above by 45. Now let

L = lim
k→∞

uk(0) .

Then 0 < L ≤ 45. Since uk+1(0) = g(uk(0)) and g is continuous on [0,∞),

L = lim
k→∞

uk+1(0)

= g

(
lim
k→∞

uk(0)

)

= g(L)

=
45L+ 1991

L+ 45
.
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This implies that L =
√

1991.

Remark. It is interesting to note that in the above problem if 45 is replaced by a
positive number a and 1991 is replaced by a positive number b, then the value of the limit
is
√
b.

Composite Solution IV by Joseph E. Chance, University of Texas-Pan American, Ed-
inburg, Texas and Jayanthi Ganapathy, University of Wisconsin-Oshkosh, Oshkosh, Wis-
consin.

It is not too hard to show that if x <
√

1991, then

(1) g(x) <
√

1991

and

(2) x < g(x) .

The problem can be restated as follows:

Define {ak} by

a1 = g(0) =
1991

45

and
ak+1 = g(ak) for k = 1, 2, . . . .

Prove that
lim
k→∞

ak

exists and find the limit.

Mathematical induction and (1) show that ak <
√

1991 for k ≥ 1. Also, (2) shows that
ak < ak+1 for k ≥ 1. Thus {ak} is bounded above and monotonically increasing, so it must
have a limit. Let

a = lim
k→∞

ak .

To find a, start with ak+1 = g(ak) and let k →∞. Thus, a = g(a) or a =
√

1991. Therefore,

lim
k→∞

ak =
√

1991 .

Also solved by N. J. Kuenzi, University of Wisconsin-Oshkosh and the proposers.
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