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In 1777, Leonard Euler introduced the imaginary number i with the property i2 = −1.

Perhaps the use of the word “imaginary” is infelicitous, however, it connotes the distrust

with which complex numbers are viewed by beginning students. The purpose of this paper

is to show that in many cases the evaluation of real integrals can be facilitated by using

complex numbers and, as a bonus, sometimes two (real) results can be obtained from one

computation.

The content of this paper is elementary but could be beneficial to some who teach lower

level mathematics courses. Formal proof is not the point of the paper. Computations will

be done formally and no justification, other than noting that the results are correct, will

be given. For the reader who can manipulate complex numbers, this nonrigorous approach

can be used as a source of motivation to study complex analysis – where both meaning and

justification can be given. It is assumed that the complex number i can be manipulated

like a real number.

The exponential function in complex analysis is defined for all complex numbers

z = x+ iy by

(1) ez = ex(cos y + i sin y) .

This definition can be motivated by formally substituting iy for y in the Maclaurin expansion

ey =
∞
∑

n=0

yn

n!

and rearranging the terms to get

eiy =
∞
∑

n=0

(−1)ny2n

(2n)!
+ i

∞
∑

n=0

(−1)ny2n+1

(2n+ 1)!
,

= cos y + i sin y ,(2)
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which agrees with (1) when x = 0. As a consequence, we can consistently define

(3) cos y =
eiy + e−iy

2
= cosh iy

and

(4) sin y =
eiy − e−iy

2i
= −i sinh iy .

One of the fundamental formulas from integral calculus is

(5)

∫

ezxdx =
1

z
ezx + c ,

where c is arbitrary constant and z is a nonzero parameter. Throughout this paper it is

assumed that (5) is valid for all nonzero complex parameters z = a+ bi.

Example. We will evaluate
∫ π

0 sin2 xdx by using complex numbers rather than using

the standard approach of employing the half-angle formula sin2 x = 1−cos 2x
2 . From (4) we

get

∫ π

0

sin2 xdx =

(

−1

8
e2ix +

x

2
− 1

8
e−2ix

)
∣

∣

∣

∣

π

0

=
π

2
.

Similarly,

∫ π

2

0

cos4 xdx =
1

16

∫ π

2

0

(eix + e−ix)4dx

=
1

16

∫ π

2

0

(e4ix + 4e2ix + 6 + 4e−2ix + e−4ix)dx

=
3π

16
.

71



This result can be obtained using integration by parts or by using an appropriate reduction

formula. The above procedure is noticeably easier.

The standard ploy taught in calculus to evaluate
∫

eax cos bxdx is to integrate by parts

twice and thereby obtain

∫

eax cos bxdx =
1

b
eax sin bx+

a

b2
eax cos bx− a2

b2

∫

eax cos bxdx+ c ,

or equivalently,

a2 + b2

b2

∫

eax cos bxdx =
1

b2
eax(b sin bx+ a cos bx) + c .

Hence,

(6)

∫

eax cos bxdx = eax
(b sin bx+ a cos bx)

a2 + b2
+ c1

where c1 is an arbitrary constant. A similar computation gives

(7)

∫

eax sin bxdx = eax
(a sin bx− b cos bx)

a2 + b2
+ c2 .

To see how complex numbers can be used to obtain (6) and (7) simultaneously, substi-

tute z = a+ ib into (5) and use (1) to get

(8)

∫

eax(cos bx+ i sin bx)dx =
a− bi

a2 + b2
eax(cos bx+ i sin bx) + c1 + ic2 .

Equating real and imaginary parts in (8) gives the desired results.
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Example. Laplace transforms are useful in solving a special class of differential equa-

tions. The Laplace transform of a function f is denoted by L[f(x)] and is defined by

L[f(x)] =

∫

∞

0

e−sxf(x)dx .

So, if s > 0, then

L[sinx] =

∫

∞

0

e−sx sinxdx = lim
t→∞

e−sx(−s sinx− cosx)

s2 + 1

∣

∣

∣

∣

t

0

=
1

s2 + 1
.

To obtain more general results consider
∫

xne(a+bi)xdx. The method of integration by

parts yields

∫

xne(a+bi)xdx =
1

a+ bi

[

xne(a+bi)x − n

∫

xn−1e(a+bi)xdx

]

,

and so,

∫

xneax(cos bx+i sin bx)dx =
a− bi

a2 + b2

[

xneax(cos bx+ i sin bx)

− n

∫

xn−1eax(cos bx+ i sin bx)dx

]

+ c1 + ic2 .(9)

Equating real and imaginary parts in (9) gives the two well-known identities

∫

xneax cos bxdx =
xneax

a2 + b2
(a cos bx+ b sin bx)

− n

a2 + b2

∫

xn−1eax(a cos bx+ b sin bx)dx+ c1 ,
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and

∫

xneax sin bxdx =
xneax

a2 + b2
(a sin bx− b cos bx)

− n

a2 + b2

∫

xn−1eax(a sin bx− b cos bx)dx + c2 .

Example. The reaction rate to a particular drug dosage at time x hours after adminis-

tration is measured by r(x) = x2e−x (in appropriate units). The total reaction to the given

drug dosage is

∫

∞

0

r(x)dx = lim
t→∞

∫ t

0

x2e−xdx .

Using the above result three times with a = −1, b = 0, and n = 2, 1, 0 gives

∫

∞

0

r(x)dx = 2 .

Amid all of these formal computations suppose we replace b with ib in (6). Then, for

a2 6= b2,

(10)

∫

eax cos ibxdx =
eax(ib sin ibx+ a cos ibx)

a2 − b2
+ c1 .

Using (3) and (4) to simplify (10) yields

∫

eax cosh bxdx =
eax(−b sinh bx+ a cosh bx)

a2 − b2
+ c1 .

Starting with (7) and performing the analogous steps shows that

∫

eax sinh bxdx =
eax(a sinh bx− b cosh bx)

a2 − b2
+ c
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if a 6= ±b.

It is also possible to use complex analysis to evaluate (real) improper integrals. For

instance, by employing residue theory it can be shown that

∫

∞

0

cosx2dx =

∫

∞

0

sinx2dx =

√
2π

4
,

∫

∞

−∞

sinx

x
dx = π ,

and
∫

∞

0

cos ax

(x2 + b2)2
dx =

π

4b3
(1 + ab)e−ab ,

for a > 0 and b > 0.

These integrals can be found in [1] and [2]. Although these integrals could possibly be

evaluated by using techniques involving only real numbers, it is noticeably easier to obtain

these results by using complex numbers.
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