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Abstract. In the past decade, there has been some interest shown in the use of linear

programs to solve discriminant analysis problems. In this paper we present and clarify an

alternative to the statistical approach for discriminating between two (or more) groups of

vector-valued data in which an order relation is given.

By the nature of this problem, a bicriteria linear program can be used instead of

a statistical approach and hence no statistical assumptions need to be imposed on the

problem.

1. Introduction. Classical discriminant analysis is a multivariate statistical technique

concerned with

(1) separating distinct sets of objectives and

(2) allocating new objectives to previously defined groups [4].

In the past decade, this problem has been studied using linear programs [1, 2, 3]. However,

in many cases, a “complete separation” using a linear discriminant function is impossi-

ble. Therefore, by the nature of the problem a bicriteria linear programming approach is

preferred.

The bicriteria linear program contains the following two objective criteria:

(1) maximize the total separation and

(2) minimize the total misclassification

Of course, (2) above can be omitted if it is known that the groups are separable. This

will be discussed further in the later sections.

A linear discriminant analysis problem seeks a vector c which is used to construct a

linear discriminant function f(x) = cx. This linear discriminant function is then used to

separate the given groups of vector-valued data G1, G2, . . ., Gm and provides an allocation

rule for placing future unclassified data into one of the groups.
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In this paper we assume that a subjective ranking (order relation) has been imposed

on the groups G1, G2, . . ., Gm. That is, for any two distinct groups of data Gi and Gj

either Gi is preferred to Gj or Gj is preferred to Gi. Without loss of generality, we may

assume that Gi is preferred to Gj whenever i > j. This order relation is denoted by writing

Gj ≺ Gi if i > j. Thus, we are given

G1 ≺ G2 ≺ · · · ≺ Gm

This assumption arises in many problems [5] and it is possible to use, in some cases,

artificial intelligence techniques to determine the subjective rankings discussed above. This

will not be discussed in this paper, rather we will assume that the rankings have been given.

We now formally state the problem.

Problem 1.1. Given m groups of vector-valued data (that is values in En) such that

(1) G1 ≺ G2 ≺ · · · ≺ Gm

(2) Gi = {xij ∈ En : j = 1, 2, . . . , li} where i = 1, 2, . . . ,m.

find a vector c (and hence a linear discriminant function f(x) = cx), and the appropriate

intervals Ii = (Li, Ui], such that

i. Ii ∩ Ik = ∅, 1 ≤ i, k ≤ n, i 6= k.

ii. f(xij) ∈ Ii, j = 1, 2, . . . , li i = 1, 2, . . . ,m.

iii. L1 < U1 ≤ L2 < U2 ≤ · · · ≤ Lm < Um

Definition 1.2. The groups G1, G2, . . ., Gm are said to be separable if there exists a

linear function f(x) = cx such that f(xij) ∈ Ii for all j = 1, 2, . . . , li and for all i = 1, 2, . . . ,m

provided that (iii) above holds. Otherwise the groups are said to be nonseparable.

2. Models and Discussion. First, we solve a simple basic mode, L. P. 2.1, to follow,

which assumes that the groups are separable. We will then generalize the basic model to

attack the case where the groups are not separable.

L. P. 2.1. Maximize

(1)

m∑
c=1

αii +

m−1∑
i=1

αi+1,i
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subject to the constraints

Li ≤ cxij ≤ Ui i = 1, 2, . . . ,m, j = 1, 2, . . . , li(2)

Ui − Li = αii i = 1, 2, . . . ,m(3)

Li+1 − Ui =αi+1,i i = 1, 2, . . . ,m− 1(4)

0 ≤ αii, αi+1,i ≤ K(5)

L. P. 2.1 finds the vector c and the boundaries of the intervals Ui, Li while the xij ’s are

given data and K is chosen so as to bound the unknown quantites to be found.

The assumption of separability guarantees that f(xij) ∈ (Li, Ui] and the remaining

constraints guarantee that

L1 < U1 ≤ L2 < U2 ≤ · · · ≤ Lm < Um .

The last constraint in problem 2.1 guarantees that the solution will be bounded. Without it

the model is unbounded as can be seen from (2) or from the dual linear program of L. P. 2.1.

In fact, the upper bound K can be chosen to be any real number, since by (2) one can see

that in the discriminant function f(x) = cx, that c is a vector of relative weights. Or, if one

considers the geometry, it will be the normal of the hyperplane defined by f(x) = cx = z∗,

for some real number z∗.

Let c∗ and (L∗
i , U

∗
i ] be an optimal solution found from L. P. 2.1. Then the allocation

rule for a new vector x states that if f(x) = c∗x ∈ Ji then x ∈ Gi, where

Ji =

(
L∗
i + U∗

i−1

2
,
U∗
i + L∗

i+1

2

]
.

Then Ji ∩ Jj = ∅ if i 6= j ∀ 1 ≤ i, j ≤ m.

Next, we consider the nonseparable case. This case is a generalization of the separable

case. In the nonseparable case, we assume that

G1 ≺ G2 ≺ · · · ≺ Gm

and

L1 < U1 ≤ L2 < U2 ≤ · · · ≤ Lm < Um .
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To find f(x) = cx and Li,Ui for all i, however, we note that the condition

f(xij) = cxij ∈ Ii

may very well be false for some of the xij ∈ Gi. Thus for each xij ∈ Gi, one of the following

three cases must hold

a. Li ≤ cxij ≤ Ui

b. cxij ≤ Li

c. cxij ≥ Ui

The above three cases can be combined into

(6) Li − βi
j ≤ cxij ≤ Ui + γij

where βi
j and γij both are nonnegative quantities and can be considered as the “distance”

away from the interval, or the “error” due to misclassification. When the groups are sepa-

rable we have that βi
j = γij = 0 ∀ i, j. Based on this, we develop the following bicriteria

linear program

B. C. L. P. 2.2. Maximize

(7)

m∑
i=1

αii +

m−1∑
i=1

αi+1,i

and minimize

(8)

m∑
i=1

li∑
j=1

βi
j +

m∑
i=1

li∑
j=1

γij

subject to the constraints (2), (3), (4), (5), of L. P. 2.1 and

(9) 0 ≤ βi
j ≤ K, 0 ≤ γij ≤ K
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In the above (7) maximizes the total interval length as in (1), while (8) minimizes

the total misclassification. This last problem simultaneously optimizes both goals of the

discriminant analysis problem.

To solve the bicriteria linear program one can use the weighted linear program to obtain

an optimal solution for B. C. L. P. 2.2. By the scalarization theorem of the multicritieria

linear program [6] and the nature of the problem, one can then obtain the following weighted

linear program with equal weights for both objectives as in the problem.

L. P. 2.3. Maximize

(10)

m∑
i=1

αii +

m−1∑
i=1

αi+1,i −
( m∑

i=1

li∑
j=1

βi
j +

m∑
i=1

li∑
j=1

γij

)

subject to the constraints (2), (3), (4), (5), (9).

An optimal solution of L. P. 2.3 c∗, βi∗

j , γi
∗

j , U∗
i , L∗

i then can be used to define a linear

discriminant function f(x) = c∗x and the allocation rule then would be the same as the

separable case. When the optimal solution has βi
j = γij = 0 for all i, j, such that 1 ≤ j ≤ li

and 1 ≤ i ≤ m, then we have the separable case.

3. Conclusions and Examples. L. P. 2.3, in fact, is a general formulation of

L. P. 2.1. In general, among groups Gi, i = 1, 2, . . . ,m with G1 ≺ G2 ≺ · · · ≺ Gm, it is

very difficult to detect whether the groups are separable or nonseparable. So for any given

problem one should always apply problem 2.3 to solve the discriminant analysis problem.

An optimal solution of L. P. 2.3 then shows whether the groups are separable or nonsep-

arable and determines a linear discriminant function. Also one can then obtain an allocation

rule for the future data allocation.

66



Example 3.1. Given the data shown in table 1, find a discriminant function.

G1 G2 G3

x11 = (2, 1) x21 = (2, 3) x31 = (4, 8)
x12 = (3, 1) x22 = (3, 4) x32 = (4, 9)
x13 = (3, 2) x23 = (3, 5) x33 = (5, 9)
x14 = (5, 3) x24 = (6, 6) x34 = (5, 10)
x15 = (6, 2) x25 = (7, 8) x35 = (7, 10)

x26 = (8, 7)
x27 = (1, 4)

Table 1

Let the order relation be given by G1 ≺ G2 ≺ G3. Applying L. P. 2.3 and (6) we

obtain the discriminant function f(x) = −33.3x1 + 53.3x2 and the intervals J1 = (−∞, 50],

J2 = (50, 243.33] and J3 = (243.33,∞]. The allocation rule for new data x = (x1, x2) will

be

i. x ∈ G1 if −33.3x1 + 53.3x2 ∈ J1.

ii. x ∈ G2 if −33.3x1 + 53.3x2 ∈ J2.

iii. x ∈ G3 if −33.3x1 + 53.3x2 ∈ J3.
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Figure 1
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