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Abstract. The well known “SOR” method is obtained from a one-part splitting of the

system matrix A, using one parameter ω.

M. Sisler introduced a new method by using one parameter for the lower triangular

matrix L. Later he combined the above two methods to get a two parametric method [7],

[8], and [9].

D. Young considered yet another two parametric method. The two parameters weight

the diagonal of a positive-definite and consistently ordered 2-cyclic matrix [6]. Remov-

ing Young’s hypothesis that both parameters are in the interval (0, 1], we generalized his

theorem.

1. Introduction. To find the solution vector x to the linear system Ax = b, where A

is a sparse n×n matrix and b is a given n-vector of complex n-space, usually A is not easy

to invert. Therefore, one seeks an easy-to-invert part of A, say A0. Hence

(1.1) A = A0 −A1

or equivalently,

(1.2) A = A0(I −A−1
0 A1) = A0(I −B)

where B = A−1
0 A1 is called the iteration matrix. Relation (1.1) is called an additive splitting

which defines the {xk} for an arbitrary fixed x0 via,

A0xk+1 −A1xk = b k = 0, 1, 2, . . .

or equivalently

xk+1 = A−1
0 A1xk +A−1

0 b k = 0, 1, 2, . . .

xk+1 = Bxk +A−1
0 b k = 0, 1, 2, . . .
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Looking at relation (1.1), it is clear that if {xk} converges at all, it must converge to

xsol = A−1b (vector solution), where Axsol = b. Relation (1.2) shows that {xk} converges

to xsol = A−1b for each x0 if and only if ρ(B) < 1, where ρ(B) is the spectral radius of

B [1,6]. Use relation (1.2) to measure the asymptotic convergence R∞ of the sequence

{xk} where R∞ is defined by R∞ = − log ρ(B) which carries information on how fast the

sequence {xk} converges. In fact, 1
R∞

asymptotically represents the number of iterations

that suffice to produce one additional decimal place of accuracy in xk’s.

The above splitting is called stationary since there is no altering of parameter from

iteration to iteration. It is called one part splitting since each xk+1 depends only on one

previous vector xk.

Examples of one-part stationary splitting are represented in the following important

iteration methods.

JACOBI: Choose

A0 = D , A1 = L+ U .

Then

Bjacobi = Bj = D−1(L+ U)

where D is the diagonal part of A and −L, −U are strictly lower and upper triangular parts

of A, respectively.

S.O.R.: The Successive Overrelaxation (SOR) method was developed independently by

Frankel [2] and Young [3], [4] in 1950. Choose

A0 =
1

ω
D − L , A1 =

(

1

ω
− 1

)

D + U .

Then

(1.3) B = Bω = (D − ωL)−1((1 − ω)D + ωU) .

MSOR: The Modified Successive Overrelaxation (MSOR) method was first considered by

Devogelaere [5] in 1958. Here is how it works. Consider the matrix A in the following form

A =

(

D1 M

N D2

)
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where D1 and D2 are square non-singular matrices. Use ω for the “red” equations corre-

sponding to D1 and ω′ for the “black” equations corresponding to D2 then

A0 =

(

1
ω
D1 0
N 1

ω′
D2

)

and

A1 = A0 −A =

(
(

1
ω
− 1

)

D1 −M

0
(

1
ω′

− 1
)

D2

)

Therefore, iteration matrix B(ω,ω′) is defined by

(1.4) B(ω,ω′) = A−1
0 A1

(

(1− ω)I1 ωF

ω′(1− ω)G ωω′GF + (1− ω′)I2

)

where F = −D−1
1 M and G = −D−1

2 N . Young [6] has proved that if A is positive definite,

then

ρ(Bωb
) < ρ(B(ω,ω′))

where ρ(B(ω,ω′)) is the virtual spectral radius of B(ω,ω′). Young also showed that B1 (Gauss-

Seidel iteration matrix) converges faster than MSOR if A is positive definite, 0 < ω ≤ 1

and 0 < ω′ ≤ 1.

In this paper a generalization of Young’s theorem (A is positive definite, 0 < ω ≤ 1

and 0 < ω′ ≤ 1) will be given (Theorem 2.2).

2. Generalized MSOR Method.

Lemma 2.1. Let

A =

(

D1 M

N D2

)

where D1 and D2 are non-singular matrices. Let ρ(Bj) < 1 and assume all the eigenvalues

of Bj are real. If 0 < ω ≤ 1 or 0 < ω′ ≤ 1, then the eigenvalues of B(ω,ω′) are real.

Proof. According to Young [6]

(λ+ ω − 1)(λ+ ω′ − 1) = λωω′µ2
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or equivalently

(2.1) λ2 − (2− ω − ω′ + ωω′µ2)λ+ (ω − 1)(ω′ − 1) = 0

If ω = 1 or ω′ = 1 by equation (2.1) it is clear that λ is real. Assume that ω 6= 1, ω′ 6= 1

and 0 < ω′ < 1. Let △ be the discriminant of the quadratic equation (2.1), i.e.,

△ = (2− ω − ω′ + ωω′µ2)2 − 4(ω − 1)(ω′ − 1)

△ = (1− ω′µ2)2ω2 − 2(ω′ − 2ω′µ2 + ω′2µ2)ω + ω′2(2.2)

The parabola (2.2) has no x-intercept since the discriminant△′ of equation (2.2) is negative,

because

△′ = (ω′ − 2ω′µ2 + ω′2µ2)2 − ω′2(1− ω′µ2)

△′ = 4ω′2µ2(µ2 − 1) + 4ω′3µ2(1 − µ2) .

Hence

(2.3) △′ = 4ω′2µ2(1− µ2)(ω′ − 1) .

Now by assumption since ω′ < 1 and µ2 < 1, relation (2.3) is negative. Therefore, parabola

(2.2) has no x-intercept. But it is known that (1 − ω′µ2)2 > 0, then △ is always positive

which implies that equation (2.1) has real roots. Lemma 2.1 is true for the case 0 < ω ≤ 1,

because we can arrange △ as the following

△ = (1− ωµ2)2ω′2 − 2(ω − 2ωµ2 + ω2µ2)ω′ + ω2 .

Theorem 2.2. Let

A =

(

D1 M

N D2

)

where D1 and D2 are non-singular matrices. Assume that all the eigenvalues of Bj are real

and µ1 = ρ(Bj) < 1. If 0 < ω ≤ 1 or 0 < ω′ ≤ 1, then

ρ(B(ω,ω′)) ≥ ρ(B1) ,
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except for the following special cases. Choose ω and ω′ such that ωω′ > 1 and either

(a)
1

ω
+

1

ω′
< 2 and

(1 − ω)(1− ω′)

1− ωω′
< µ2

1

or

(b) µ2
1 >

(ω + ω′ − 2) +
√
M

2(1 + ωω′)

where M = ω2 + ω′2 + ωω′(−6− 4ωω′ + 4ω + 4ω′).

Proof.

(i) Suppose 0 < ω ≤ 1 and 0 < ω′ ≤ 1 (Young’s theorem [6]). (A new proof is given

which is easier than Young’s. Use this proof to extend Young’s theorem). In relation (2.1)

λ2 − (2− ω − ω′ + ωω′µ2)λ+ (ω − 1)(ω′ − 1) = 0

By assumption 0 < ω ≤ 1 and 0 < ω′ ≤ 1 therefore,

(2.4) b(µ) = 2− ω − ω′ + ωω′µ2 > 0

and

(2.5) λi =
b(µi)±

√

b2(µi)− 4(ω − 1)(ω′ − 1)

2
.

Because all λi’s are real, by Lemma 2.1 the spectral radius of B(ω,ω′) is given by

(2.6) ρ(B(ω,ω′)) =
b(µ1) +

√

b2(µ1)− 4(ω − 1)(ω′ − 1)

2
.

Thus,

b(µ1) +
√

b2(µ1)− 4(ω − 1)(ω′ − 1)

2
> µ2

1
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or equivalently

(2.7)
√

b2(µ1)− 4(ω − 1)(ω′ − 1) > 2µ2
1 − b(µ1)

since 0 < ω ≤ 1 and 0 < ω′ ≤ 1

(2.8)
1

ω
+

1

ω′
> 1

or

ω + ω′ > ωω′

ω + ω′ − 2 > ωω′ − 2 > µ2
1(ωω

′ − 2)(2.9)

relation (2.9) holds because µ2
1 < 1. Therefore,

−µ2
1(ωω

′ − 2) + ω + ω′ − 2 > 0

or

2µ2
1 − (2− ω − ω′ + µ2

1ωω
′) > 0 .

Since the right hand side of relation (2.7) is positive, one can square both sides of relation

(2.7). Therefore,

b2(µ1)− 4(ω − 1)(ω′ − 1) > 4µ4
1 − 4µ2

1b(µ1) + b2(µ1)

(1 − ωω′)µ4
1 − (2 − ω − ω′)µ2

1 + (ω − 1)(ω′ − 1) < 0(2.10)

(µ2
1 − 1)((1− ωω′)µ2

1 − (ω − 1)(ω′ − 1)) < 0 .(2.11)

In this case one can show that

(2.12)
(1− ω)(1− ω′)

1− ωω′
< 1

holds since
1

ω
+

1

ω′
> 2 .

One has also the following relation

(2.13)
(1− ω)(1− ω′)

1− ωω′
< µ2

1
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because clearly

ω′ − 1 + µ2
1ω

′ < ω′ − 1 + µ2
1

ω(ω′ − 1 + µ2
1ω

′) < ω′ − 1 + µ2
1 .

Hence

ωω′ − ω − ω′ + 1 < µ2
1(1 − ωω′)

since 1− ωω′ > 0 which implies

ωω′ − ω − ω′ + 1

1− ωω′
< µ2

1 .

This shows that inequality (2.13) is true. Thus by inequalities (2.12) and (2.13)

(1− ω)(1− ω′)

1− ωω′
< µ2

1 < 1 .

This implies that inequality (2.12) always holds because µ2
1 − 1 < 0, which means in this

case

ρ(B(ω,ω′)) > ρ(B1) .

Of course if we choose (without loss of generality) ω > 1 and ω′ < 1 such that ωω′ < 1 then

obviously

(1− ω)(1− ω′)

1− ωω′
< 0 .

Hence inequalities (2.13) and (2.12) always hold.

(ii) Assume (without loss of generality) 0 < ω′ ≤ 1 and

0 < ω <
2− ω′

1− ω′µ2
1
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such that ωω′ > 1. By this assumption b(µ1) > 0.

Claim.

ρ(B(ω,ω′)) > ρ(B1)

if and only if inequality (2.11) holds.

Proof of Claim.

1

ω
+

1

ω′
< 2

or

ωω′ − ω − ω′ + 1 > 1− ωω′ .

Hence
(1− ω)(1− ω′)

1− ωω′
< 1

since 1− ωω′ < 0. By assumption

(2.14)
(1− ω)(1− ω′)

1− ωω′
< µ2

1 < 1

which implies that inequality (2.11) be always true. Note that if

1

ω
+

1

ω′
> 2 ,

then µ2
1 > 1.

(iii) Assume (without loss of generality) ω′ ≤ 1 and

ω ≥ 2− ω′

1− ω′µ2
1

then b(µ1) < 0. Hence,

ρ(B(ω,ω′)) =
−b(µ1) +

√

b2(µ1)− 4(ω − 1)(ω′ − 1)

2
.
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Suppose that

ρ(B(ω,ω′)) < ρ(B1) ,

then by the same argument in (i)

(2.15) (1 + ωω′)µ4
1 + (2− ω − ω′)µ2

1 + (ω − 1)(ω′ − 1) > 0 .

Inequality (2.15) holds if and only if either

(2.16)
(3− 2

√
2)ω′ + 2(

√
2− 1)ω′2

1 + 4ω′ − 4ω′2
< ω <

(3 + 2
√
2)ω′ − 2(

√
2 + 1)ω′2

1 + 4ω′ − 4ω′2

or

ω >
(3 + 2

√
2)ω′ − 2(

√
2 + 1)ω′2

1 + 4ω′ − 4ω′2
(2.17)

ω <
(3− 2

√
2)ω′ + 2(

√
2− 1)ω′2

1 + 4ω′ − 4ω′2
.(2.18)

Note that

(2.19) µ2
1 >

4ω′3 − 2(5−
√
2)ω′2 + 2(2−

√
2)ω′ + 2

2(1 +
√
2)ω′3 − (3 + 2

√
2)ω′2

because its denominator is negative and its numerator is positive for 0 < ω′ ≤ 1, hence

inequality (2.19) implies that

(2.20)
(3 + 2

√
2)ω′ − 2(

√
2 + 1)ω′2

1 + 4ω′ − 4ω′2
<

2− ω′

1− ω′µ2
1

.

Then inequality (2.16) and inequality (2.18) cannot hold since it contradicts

ω >
2− ω′

1− ω′µ2
1
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so inequality (2.17) always holds. Now that inequality (2.17) holds, inequality (2.15) is true

if and only if

(2.21) µ2
1 <

−(2− ω − ω′)−
√
M

2(1 + ωω′)
or µ2

1 >
−(2− ω − ω′) +

√
M

2(1 + ωω′)
.

For ω > 1,

(ω − 1)(ω′ +
1

ω
) > 0

multiplying by (ω′ − 1),

((ω′ − 1)ω′)ω2 − (ω′ − 1)2 − (ω′ − 1) < 0 .

This implies −(2 − ω − ω′) −
√
M < 0. Then the first inequality of (2.21) cannot hold.

Hence, inequality (2.15) holds when ω′ < 1,

ω′ >
2− ω′

1− ω′2

and the second inequality of (2.21) holds (part b).

Examples.

(1) Suppose µ2
1 = 0.5, let ω′ = 0.8 and ω = 1.6, then ωω′ > 1,

(1− ω)(1− ω′)

1− ωω′
= 0.428571 < µ2

1

and
1

ω
+

1

ω′
< 2 .

Hence, all the conditions of case (a) hold. It follows that the spectral radii

ρ(B(ω,ω′)) < ρ(B1)
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where

ρ(B(ω,ω′)) = 0.48

and ρ(B1) = 0.5.

(2) Suppose µ2
1 = 0.5, let ω′ = 0.7 and ω = 1.9, then ωω′ > 1

(1− ω)(1− ω′)

1− ωω′
= 1.5 > µ2

1

and
1

ω
+

1

ω′
< 2 .

It follows that the spectral radii

ρ(B(ω,ω′)) > ρ(B1)

where

ρ(B(ω,ω′)) = 0.5737

and ρ(B1) = 0.5.

(3) Suppose µ2
1 = 0.7, let ω′ = 0.7 and ω = 2.5, then

−(2− ω − ω′) +
√
M

2(1 + ωω′)
= 0.66778 < µ2

1 .

Hence, all the conditions of case (b) hold. It follows that the spectral radii

ρ(B(ω,ω′)) < ρ(B1)

where

ρ(B(ω,ω′)) = 0.683

and ρ(B1) = 0.7.

(4) Suppose µ2
1 = 0.5, let ω′ = 0.7 and ω = 2.1, then

−(2− ω − ω′) +
√
M

2(1 + ωω′)
= 0.56 > µ2

1 .
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It follows that the spectral radii

ρ(B(ω,ω′)) > ρ(B1)

where

ρ(B(ω,ω′)) = 0.61

and ρ(B1) = 0.5.
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