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Abstract. In the past decade, there has been some interest shown in solving discrim-

inant analysis problems using mathematical programming techniques. In this paper, we

present a quadratic program which is used to obtain a linear discriminant function. This

would provide an alternative to the conventional statistical approach.

1. Introduction. A linear discriminant analysis problem seeks a vector c which is used

to construct a linear discriminant function f(x) = cx. This linear discriminant function is

then used to separate the given groups of vector-valued data G1, G2, . . ., Gm and provides

an allocation rule for placing future unclassified data into one of the groups.

In this paper, we assume that a subjective ranking (order relation) has been imposed

on the groups G1, G2, . . ., Gm. That is, for any two distinct groups of data Gi and Gj

either Gi is preferred to Gj or Gj is preferred to Gi. Without loss of generality, we may

assume that Gi is preferred to Gj whenever i > j. This order relation is denoted by writing

Gj ≺ Gi if i > j. Thus, we are given

G1 ≺ G2 ≺ · · · ≺ Gm

This assumption arises in many problems [5] and it is possible to use, in some cases,

artificial intelligence techniques to determine the subjective rankings discussed above. This

will not be discussed in this paper, rather we will assume that the rankings have been given.

This problem was discussed in [7] and is summarized as follows.

Problem 1.1. Given m groups of vector-valued data (that is values in En) such that

(1) G1 ≺ G2 ≺ · · · ≺ Gm

(2) Gi = {xi
j ∈ En : j = 1, 2, . . . , li} where i = 1, 2, . . . ,m.

find a vector c (and hence a linear discriminant function f(x) = cx), and the appropriate

intervals Ii = (Li, Ui], such that
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i. Ii ∩ Ik = ∅, ∀ 1 ≤ i, k ≤ n, i 6= k.

ii. f(xi
j) ∈ Ii, ∀ j = 1, 2, . . . , li and ∀ i = 1, 2, . . . ,m.

iii. L1 < U1 ≤ L2 < U2 ≤ · · · ≤ Lm < Um

Definition 1.2. The groups G1, G2, . . ., Gm are said to be separable if there exists

a linear function f(x) = cx such that f(xi
j) ∈ Ii, ∀ j = 1, 2, . . . , li and ∀ i = 1, 2, . . . ,m

provided that (iii) above holds. Otherwise the groups are said to be nonseparable.

2. Model and Discussion. It may happen that there is no linear function f(x) = cx

that will separate the data in the groups under the order relation prescribed in Problem

1.1. Of course, there could be a linear function f(x) = cx that will separate the data into

disjoint intervals but in such a manner that the prescribed order relation, in 1.1, is not

satisfied.

We propose to split Problem 1.1 into two parts:

a. Find a linear function f(x) = cx, if possible, that separates the groups of data into

disjoint intervals without regard to the prescribed order relation in Problem 1.1. The

technique for doing this is given below and will be seen to be completely independent

of the order relation in Problem 1.1.

b. Suppose that the intervals found in (a) are Ij = [Lj , Uj ], where f(Gj) ⊆ Ij . Since

the order relation in Problem 1.1 was ignored in (a) above, it is not necessarily true

that Li < Lj if i < j. To meet the order relation specified in Problem 1.1, relabel the

groups, if the problem permits, to conform to the order found in (a). If the problem

does not permit this then create a piecewise linear function g(x) which maps each Ij

into another interval [g(Lj), g(Uj)] in such a manner that

g(L1) < g(U1) ≤ g(L2) < g(U2) ≤ · · · ≤ g(Lm) < g(Um)

in conformity with the order relation in Problem 1.1.

Since the function g, of (b) can always be found once the intervals from part (a) are

known we confine our attention to attempting to find the intervals in part (a).

The quantities xi in the objective function below are defined by

xi =

∑li
j=1 x

i
j

li
.
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We may think of the xi’s as being the center of mass of li unit masses located at xi
j . This

becomes then the center of mass of the group Gi. For this reason we shall refer to the points

xi as centroids.

The model used is

Q. P. 2.1. Maximize

m∑
i=1

m∑
j=i+1

(cxi − cxj)
2 + 2K −

m∑
i=1

(Ui − Li)

subject to the constraints

i. −K ≤ Li ≤ cxi
j ≤ Ui ≤ K i = 1, 2, . . . ,m, j = 1, 2, . . . , li .

ii.

n∑
j=1

cj ≥ 1 .

We attempt to find a c = (c1, c2, . . . , cn) that will give maximum separation to the

values cxi. It seems reasonable that this, if successful, will lead to the most widely separated

set of disjoint intervals Ij . We would also like the intervals [Li, Ui] to be of minimum length

in the sense that cxi
j = Li for some j and cxi

j = Ui for some (different) value of j.

The first term in the objective function is maximized by giving maximum separation

to the centroids. The second term in the objective function is maximized by making the

intervals [Li, Ui] as small as possible subject to the constraint (i). Thus maximizing our

objective function gives us the two properties that we sought above. K is an arbitrarily

selected constant that guarantees a bounded solution for the intervals. In the examples that

follow a value of 100 was used and seemed to work quite well.

The advantage of this form of the problem is that it determines what might be called a

natural order for the intervals [Li, Ui] and removes any dependence upon the order relation

prescribed for the Gi in the original problem. In most cases the first term, in the objective

function, is the larger and there is no danger of c being zero. For such problems we do not
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need to impose the constraint in (iii). There is no danger that c will be unbounded because

of constraint (i).

3. Example. Two sets of data were considered, one set was separable and the other

was not. The model was solved on Gino [8].

The two groups of data were:

Data Set 3.1. The nonseparable data is

i. G1 = {(2, 4), (4, 5), (6, 2)} x1 = (4, 11/3) .

ii. G2 = {(3, 4), (4, 3), (5, 4)} x2 = (4, 11/3) .

iii. G3 = {(5, 3), (5, 6), (6, 7)} x3 = (16/3, 16/3) .

Data Set 3.2. The separable data is

i. G1 = {(4, 1), (6, 1), (6, 4)} x1 = (16/3, 2) .

ii. G2 = {(3, 4), (4, 5), (5, 4)} x2 = (4, 13/3) .

iii. G3 = {(1, 4), (2, 5), (2, 6)} x3 = (5/3, 5) .

Each of the two groups was run twice. Once using constraint (iii) and once without.

The model results are presented in the two tables below.

with (iii) item without (iii)
[−100,−29.4] [L1, U1] [29.4, 100]
[−8.8, 35.3] [L2, U2] [−35.3, 8.8]
[73.5, 100] [L3, U3] [−100,−73.5]
(−20.5, 23.5) (c1, c2) (20.5,−23.5)

Table 3.1

Separable Data

with (iii) item without (iii)
[−100, 100] [L1, U1] [−100, 100]
[0, 70] [L2, U2] [0, 70]
[−30, 100] [L3, U3] [−30, 100]
(−30, 40) (c1, c2) (−30, 40)

Table 3.2

Nonseparable Data
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In the following figure we show the separable data and the separating lines using the

vector c = (−20.5, 23.5).

Figure 1
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