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Abstract. Generating functions, one of the important topics in undergraduate discrete

mathematics, are useful in a wide range of disciplines in mathematics. However, most of the

undergraduate students feel that it is difficult to apply them. In this paper, we first introduce

the background necessary for our discussion, then we demonstrate, through examples, how

generating functions can be used in certain series, probability theory, and some counting

problems. A BASIC program performing some counting calculations can be obtained from

the authors upon request.

1. A Brief Discussion on Formal Power Series. Let {an}∞n=0 be a sequence of

real numbers. Then

f =

∞∑
n=0

anx
n

is the formal power series of {an}∞n=0. The following remarks can be found in [1] and [2].

Remarks.

A. The sequence {an}∞n=0 discussed above is called the sequence of coefficients and f

is called the ordinary power series generating function for {an}∞n=0.

B. f may not exist analytically, but can be considered merely as an algebraic object.

C. f has a multiplicative inverse if and only if a0 6= 0.

D. f ′ =

∞∑
n=1

[n(an)]xn−1 is called the formal derivative of f .

2. Recurring Series. A relatively old but direct application of generating functions,

found in old college algebra textbooks such as [3] and [4], is on recurring series. This

can be defined as a formal power series whose coefficient sequence is recursively generated.

Unfortunately, in order to avoid analytical difficulty, most of the examples on recurring

series only discuss the sum of the first n terms of the series. The example below may show

a different perspective on applications of recurring series and generating functions.
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As an example, let a0 = 1, a1 = 1, and

ai = ai−1 + 2ai−2 for i ≥ 2.

Then Sn, the sum of the first n+ 1 terms of the sequence, can be found as follows. Let

Tn(x) =

n∑
i=0

aix
i.

It is easy to see that

(1− x− 2x2)Tn(x) = 1− (an + 2an−1)xn+1 − 2anx
n+2

and hence

Tn(x) =
1 − (an + 2an−1)xn+1 − 2anx

n+2

1− x− 2x2
.

Since Sn = Tn(1),

Sn =
3an + 2an−1 − 1

2
.

Next, let us further discuss the infinite sum

∞∑
i=0

ai, which is a divergent series. Let

T (x) =

∞∑
i=0

aix
i.

Using the remarks in Section 1,

T (x) =
1

1− x− 2x2
.

Therefore,

lim
x→1−

∞∑
i=0

aix
i = lim

x→1−
T (x) = −1

2
,

which obviously cannot be the sum of this divergent series. However, it can be interpreted

as the A-sum of

∞∑
i=0

ai according to Hardy [5].

This example can easily be generalized to the case where the first k terms,

a0, a1, · · · , ak−1, of the sequence of coefficents are given and

(∗) ak =

k−1∑
i=0

αiai, αi ∈ R.
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Using (∗) and the same technique in the example, we can obtain the generating function

f(x) =

∑k−1
i=0 αix

i +
∑k

i=1 ai(
∑k−i−1

i=0 αjx
i+j)

1 +
∑k

i=1 aix
i

of {ai}∞i=0 and hence if lim
x→1−

f(x) exists, we have the A-sum of

∞∑
i=0

ai.

3. Means and Variances of Some Probability Distributions. In mathematical

statistics the usual way of finding the mean and variance of a given probability distribution

function (p.d.f.) is by means of its moment generating function (m.g.f.) which is different

from its corresponding power series generating function (also known as the probability

generating function or p.g.f.) defined in Section 1. Rohatgi [6] indicated that the p.g.f.

is extremely useful in finding the mean and variance of discrete probability distributions.

In fact, if F is the p.g.f. of a given p.d.f., f , then µ and σ2 can be found by the simple

formulas

µ = F ′(1)

and

σ2 = F ′′(1) + F ′(1)− [F ′(1)]2

discussed in [1]. However, to obtain F (x) from f(n) may not be an easy task in general.

If we assume that either the p.d.f., f(n), or the m.g.f., M(t), of a discrete probability

distribution is known, then the p.g.f., F (x), can be found by simply summing f(n)xn from

0 to ∞ or by replacing et by x. That is,

F (x) =

∞∑
n=0

f(n)xn.

Since f(n) is a p.d.f., F (1) = 1.

As an illustration, we will compute µ and σ2 for the negative binomial distribution.

In addition, we will display (in a table) the p.d.f. and p.g.f. of several discrete probability

distributions which are familiar to students in undergraduate statistics.

It is well known that the p.d.f. of the negative binomial distribution function is given

by

f(n) =

(
r + n− 1

n

)
pr(1− p)n, n = 0, 1, 2, · · · , 0 ≤ p ≤ 1.
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Then its p.g.f. is given by

F (x) =

∞∑
n=0

(
r + n− 1

n

)
pr(1− p)nxn =

(
px

1− (1− p)x

)r

.

Its first and second derivatives are

F ′(x) =
rprxr−1

[1− (1− p)x]r+1
;

F ′′(x) =
rprxr−2[1− (1− p)x]r((r − 1)[1− (1− p)x] + x[(r + 1)(1− p)])

[1− (1− p)x]2r+2
.

Thus, µ = F ′(1) =
r

p
and

σ2 = F ′(1) + F ′′(1)− [F ′(1)]2 =
r − rp
p2

=
r(1− p)
p2

.

Similarly, using the following table, µ and σ2 of each of those probability distributions

in the table can be easily obtained.
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4. Some Counting Problems. Now, let us consider a problem discussed in [3],

which is due to De Moivre and was published by him in 1730. There are n dice with f faces

marked from 1 to f . If they are thrown at random, what is the probability that the sum of

the numbers exhibited shall be equal to p ? The number of ways of obtaining p is simply

the coefficient of xp in the polynomial (x + x2 + · · · + xf )n. It is worthwhile to point out

that using the generating function and the Binomial Theorem we can establish

(x+ x2 + · · ·+ xf )n = xn[(1− xf )n(1− x)−n],

which is equivalent to the product

xn[1+

(
n

1

)
(−1)xf + · · ·+

(
n

n

)
(−1)n(xf )n][1+(−1)

(
n

1

)
(−x)+(−1)2

(
n+ 1

2

)
(−x)2 + · · · ].

The coefficient of xp in this product is

n(n+ 1) · · · (p− 1)

(p− n)!
−
(
n

1

)
n(n+ 1) · · · (p− f − 1)

(p− n− f)!
+

(
n

2

)
n(n+ 1) · · · (p− 2f − 1)

(p− n− 2f)!
− · · · ,

where the series continues as long as no negative factors appear. The required probability

can be obtained by dividing this series by fn.

Next, we will investigate a similar but more complicated situation. Assume that there

are 16 tickets in an urn which are distinctly numbered from 1 through 16. Suppose 4 tickets

are drawn from the urn without replacement. How many ways can these 4 ticket numbers

sum to 34? The analysis given below shows that the numbers 16, 4, and 34 are really

insignificant. Other values can be easily chosen instead of these particular ones.

The above problem is equivalent to finding the number of ways 34 can be expressed as

the sum of 4 distinct addends chosen from {1, 2, · · · 16}. As Wilf [1] suggested, the answer

is simply the coefficient of the term x4t34 in the expansion of

16∏
i=1

(1 + xti) and it turns out

to be 86.

In what follows, we establish a recursive formula for calculating the coefficients in

general. Suppose that f(k) =

k∏
i=1

(1 + xti). Then

f(k) =
∑
n,m

Ck
n,mx

ntm where m = 0, 1, · · · , k(k + 1)

2
, n = 0, · · · , k.
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f(k + 1) = f(k)(1 + xtk+1)

=
∑
n,m

Ck
n,mx

ntm +
∑
n,m

Ck
n,mx

n+1tm+k+1

=
∑
n≥0

∑
m≥0

Ck
n,mx

ntm +
∑
n≥1

∑
m≥k+1

Ck
n−1,m−k−1 x

ntm

=
∑
n≥0

∑
m≥0

Ck
n,mx

ntm +
∑
n≥0

∑
m≥0

Ck
n−1,m−k−1x

ntm

=
∑
n,m

(
Ck

n,m + Ck
n−1,m−k−1

)
xntm

.

Thus Ck+1
n,m = Ck

n,m + Ck
n−1,m−k−1. Finally, for completeness, we wrote a Quick BASIC

program to handle this tedious expansion.

5. Some Closing Remarks. There are a lot more materials concerning applications

of generating functions than what we have discussed in this paper. Some examples of the

most recent applications can be found in [1] and the papers [7], and [8] by C. Cooper and

R. Kennedy.

Finally, the authors would like to thank Mr. Mike Page, Drs. C. Lee, Paul Abbot, and

R. Carlson for their helpful suggestions.
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