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Limits of the form

(1) lim
x→0+

1

x

∫

x

0

f(t)dt

arise in beginning calculus. This limit is simply the right-hand derivative at 0 of the integral

function
∫ x

0

f(t)dt.

Indeed, the Fundamental Theorem of Calculus, which connects differential and integral

calculus, tells us that this limit is f(0) for any integrable function f which is continuous at

0. But does this limit exist if f is discontinuous at 0? This is a natural question that can

be investigated by students of calculus. We will find a class of discontinuous functions f for

which the limit in (1) exists (Result 1), and another class of functions for which this limit

does not exist (Result 2). Both of these results generalize examples which have appeared

in the literature.

One example, namely f(x) = sin 1/x (or, what is essentially the same, cos 1/x) has

appeared in the literature (Problem E 1071, American Mathematical Monthly, 1954, p.

154; Problem E 1970, op. cit., 1968, p. 678; Solution to problem 1112, Mathematics

Magazine 55 (1982) 48) where it is shown that the limit in (1) is 0. All these solutions use

the same argument (involving an integration by parts).

The function f(x) = sin(ln x) was investigated by J. Klippert in [1], in which it was

shown (again using an integration by parts) that the limit in question does not exist. He

conjectured, based on these as well as other examples, that under certain conditions the

limit in (1) must be zero. These conditions are that f is bounded and continuous on (0, 1),
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and that “the zeros of f form a null sequence of distinct terms whose associated sequence

of distances between consecutive zeros is asymptotically proportional to 1/nα for some

α > 1”. In this paper we give a counter-example to this conjecture. However, we show, as a

consequence of our first result, that this conjecture would be true provided the hypothesis

were slightly strengthened.

In what follows we will assume that f is continuous on (0, 1], and

∫ 1

0

f(t)dt

exists as an improper integral. Also, as in Klippert’s condition, the zeros of f form a null

sequence converging to 0. We arrange the zeros an, n = 1, 2, . . . , in decreasing order, and

assume that the sign of f alternates on the intervals (an+1, an), n ≥ 1. For definiteness, we

take f positive (negative) on the interval (an+1, an) for n even (odd). Define

In =

∣

∣

∣

∣

∫ an

an+1

f(t)dt

∣

∣

∣

∣

,

and let dn = an − an+1. Also, we write An ∼ Bn if two sequences {An} and {Bn} are

asymptotically proportional, i.e., An/Bn converges to a non-zero finite limit. Also, denote

∫

x

0
f(t)dt

x

by F (x).

Counter-example to Klippert’s Conjecture. Let an = 1/n, and construct f so that In

is equal to dn if n is even and dn/2 if n is odd. Then dn ∼ n−2. The sequence dn is

decreasing, so

F (a2n) =
1

a2n

∞
∑

k=n

(I2k − I2k+1) >
1

a2n

∞
∑

k=n

(d2k − d2k/2)

>
1

4a2n

∞
∑

k=n

(d2k + d2k+1) = 1/4,
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since

an =

∞
∑

k=n

dk.

Thus, the limit in question cannot be zero and, in fact, the limit can be shown to be 1/4 by

showing that the average value of f on the interval (an+2, an) converges to 1/4 as n → ∞.

(Exercise: construct f satisfying Klippert’s condition but with

lim
x→0+

F (x)

non-existent.)

Result 1. We show now that the limit of F (x) is zero as x → 0+ whenever f is bounded

and In/In+1 → 1. Given ǫ > 0, choose n so large that |Ik/Ik+1 − 1| < ǫ for k ≥ n. Choose

x, an+1 ≤ x ≤ an. Let M be a bound for |f |, and, for definiteness, assume that n = 2m is

even. If F (x) ≥ 0 we have

F (x) ≤
I2m − I2m+1 + I2m+2 − · · ·

a2m+1

=
1

a2m+1

∞
∑

k=m

I2k+1

(

I2k
I2k+1

− 1

)

≤
ǫ

a2m+1

∞
∑

k=m

I2k+1 ≤ ǫM

∑

∞

k=m
d2k+1

a2m+1

≤ ǫM.

A similar argument shows that F (x) is bounded below by −ǫM . Since ǫ > 0 is arbitrarily

small, the function F (x) converges to 0 as x → 0+. In particular, this result shows that if

In ∼ dn in addition to Klippert’s conditions, then the limit in (1) converges to 0. Indeed,

In
In+1

=
In/dn

In+1/dn+1

dn/n
−α

dn+1/(n+ 1)−α

nα

(n+ 1)α
→ 1, as n → ∞.

The function f(x) = sin(1/x) satisfies these conditions. Although this approach is

more involved than the solutions already cited, it makes the role of the cancellation clear.
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In view of an = 1/nπ, we have dn ∼ n−2. By making the change of variables u = 1/x in

the integral In, a straightforward calculation gives In/dn → 2/π as n → ∞.

Result 2. We generalize the example f(x) = sin(ln x) as follows: the limit in (1) does

not exist if In ∼ dn and dn/dn+1 → L, L > 1, as n → ∞. (Note that the last condition is

satisfied if an ∼ rn, 0 < r < 1.) We will show that F (an) is bounded below by a positive

number if n is large and even. Let n = 2m. Then for n sufficiently large

F (a2m) =
1

a2m

∞
∑

k=m

I2k+1

(

I2k/d2k
I2k+1/d2k+1

d2k
d2k+1

− 1

)

≥
c1
a2m

∞
∑

k=m

I2k+1

≥
c1
a2m

c2

∞
∑

k=m

d2k+1,

for some positive numbers c1 and c2. Moreover, for n large,

a2m =

∞
∑

k=m

d2k +

∞
∑

k=m

d2k+1 ≤ (2L+ 1)

∞
∑

k=m

d2k+1,

so F (a2m) ≥ c1c2/(2L+ 1). Similarly, it can be shown that F (an) is bounded above by a

negative number if n is a large, odd number. Taken together these bounds show that the

limit in (1) cannot exist.

For the function f(x) = sin(ln x) we have an = exp(−πn), so dn/dn+1 = eπ. Upon

making the change of variables u = lnx, a short calculation shows that In/dn = 1/2.

The conditions of both results can be weakened, and this would be an instructive exer-

cise for students who are taking a rigorous course in calculus. For instance, the hypothesis

in the second result can be replaced by the following: lim inf In/In+1 > 1, lim inf In/dn > 0,

and lim inf dn+1/dn > 0.
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