A NOTE ON A COUNTER EXAMPLE IN FINITE GROUPS

Kandasamy Muthuvel
University of Wisconsin-Oshkosh

It is known that if G is a finite abelian group and the number of elements of order 2 is not equal to 1 , then the product of all elements of G is the identity (refer to p. 78, problem 43 of [2]). Garimella [1] gave a counter example to show that the conclusion of the above statement is not true for a non-abelian group of order 21. In this short note, we show that if G is a finite non-abelian group, then there is an arrangement $x_{1}, x_{2}, \ldots, x_{n}$ of all elements of G such that the product $x_{1} x_{2} \cdots x_{n}$ is a non-identity. The proof of this follows by finding elements a and b of G, say $a=x_{1}$ and $b=x_{2}$, such that $a b \neq b a$ and $a b x_{3} \cdots x_{n}$ or bax $x_{3} \cdots x_{n}$ is a non-identity. In fact if n is odd, we find such an arrangement by defining $x_{1}=a, x_{2}=b, x_{3}=a^{-1}, x_{4}=b^{-1}, x_{2 i}=x_{2 i-1}^{-1}$ for $3 \leq i \leq(n-1) / 2$, and $x_{n}=e$.

On the other hand if G is a finite group such that

$$
S=\left\{x \in G: x^{2}=e\right\}
$$

is a subgroup of G and $|S| \neq 2$, (in particular, if G is a group of odd order), there is an arrangement $x_{1}, x_{2}, \ldots, x_{n}$ of all elements of G such that the product $x_{1} x_{2} x_{3} \ldots x_{n}$ is the identity (to prove this first, show that S is abelian, use p.78, problem 43 of [2] and the idea used in this note). The above result is not true for any finite group. For example, the product of all elements of S_{3} (the set of all permutations of $\{1,2,3\}$) in any order is a non-identity.

References

1. R. Garimella, "A Counter Example in Group Theory," Missouri Journal of Mathematical Sciences, 3 (1991), 77-78.
2. I. N. Herstein, Abstract Algebra, 2nd ed., Macmillan, New York, 1990.
