SOLUTIONS

No problem is ever permanently closed. Any comments, new solutions, or new insights on old problems are always welcomed by the problem editor.
41. [1992, 27] Proposed by Russell Euler, Northwest Missouri State University, Maryville, Missouri.

Define the sequence $\left\{L_{n}\right\}_{n=1}^{\infty}$ by $L_{1}=a, L_{2}=b$ and $L_{n+2}=L_{n+1}+L_{n}$ for $n \geq 1$, where a and b are arbitrary integers. If $a=1$ and $b=2$, then $L_{i}=i$ for three consecutive integers i.
(i) Are there other values of a and b with this property?
(ii) Are there values of a and b such that $L_{i}=i$ for four consecutive values of i ?
(iii)* What happens if the 'consecutive' restriction is removed in (i) and (ii)?

Solution by N. J. Kuenzi and Kandasamy Muthuvel, University of Wisconsin-Oshkosh, Oshkosh, Wisconsin (jointly).
(i) We will answer the more general question: Are there any other values of a and b such that three consecutive terms L_{n}, L_{n+1}, and L_{n+2} yield three consecutive integers i, $i+1$, and $i+2$?

Let $F_{1}=1, F_{2}=1$, and $F_{n+2}=F_{n+1}+F_{n}$ for $n \geq 1$ denote the Fibonacci sequence. Then the sequence $L_{1}=a, L_{2}=b$, and $L_{n+2}=L_{n+1}+L_{n}$ for $n \geq 1$ can be expressed in terms of the Fibonacci sequence by

$$
L_{n+2}=a F_{n}+b F_{n+1} \text { for } n \geq 1
$$

If $L_{n}=i, L_{n+1}=i+1$, and $L_{n+2}=i+2$ then $2 i+1=i+2$ and $i=1$. So $a=1$ and $b=2$ are the only values for a and b with the property that $L_{i}=i$ for three consecutive integers.

Next, suppose that

$$
\begin{aligned}
L_{n} & =a F_{n-2}+b F_{n-1}=1 \\
L_{n+1} & =a F_{n-1}+b F_{n}=2 .
\end{aligned}
$$

Eliminating the variable b from these two equations yields

$$
a\left(F_{n-2} F_{n}-F_{n-1}^{2}\right)=F_{n}-2 F_{n-1}=-F_{n-3} .
$$

Since

$$
\begin{gathered}
F_{n-2} F_{n}-F_{n-1}^{2}=(-1)^{n-1} \\
a=(-1)^{n} F_{n-3} .
\end{gathered}
$$

Similarly,

$$
b=(-1)^{n+1} F_{n-4}
$$

Example: If $a=F_{7}=13$ and $b=-F_{6}=-8$, then $L_{10}=1, L_{11}=2$, and $L_{12}=3$.
(ii) In part (i), we saw that if any three consecutive terms of the sequence yield three consecutive integers then the integers are 1,2 , and 3 . Hence, it is not possible to have four consecutive integers as four consecutive terms of the sequence.
(iii) We will address the following question: Is it possible to have three distinct values $i<j<k$, other than $1,2,3$ with $L_{i}=i, L_{j}=j$, and $L_{k}=k$?

Let i be the smallest subscript such that $L_{i}=i$ and let $c=L_{i+1}-L_{i}$.
(a) Suppose $c \geq 0$. Then

$$
\begin{aligned}
L_{i+2} & =2 i+c \geq i+1 \geq 2 \\
L_{i+3} & =3 i+2 c \geq i+2 \\
L_{i+4} & =5 i+3 c \geq i+4
\end{aligned}
$$

and

$$
L_{i+n}>i+n \text { for } n \geq 5
$$

So the only way we could have $L_{j}=j$ and $L_{k}=k$ would be to find values for i and c which would satisfy two of the four equations:

$$
\begin{aligned}
i+c & =i+1, \\
2 i+c & =i+2, \\
3 i+2 c & =i+3, \\
5 i+3 c & =i+4 .
\end{aligned}
$$

Exploring each of these possible cases yields only the solution $i=1, c=1, L_{2}=2$, and $L_{3}=3$.

So if $L_{i}=i$ and $c \geq 0$ it is not possible to have $L_{i}=i, L_{j}=j$, and $L_{k}=k$, for $i<j<k$, unless $i=1, j=2$, and $k=3$.
(b) Suppose $c<0$. Let j be the next smallest subscript such that $L_{j}=j$. Note that $j \geq i+2 \geq 3$.

If the sequence of terms

$$
L_{i}, L_{i+1}, \ldots, L_{i+n}=L_{j}
$$

contained two consecutive negative terms, then all successive terms in the sequence would be negative and $L_{j}<0$. So the sequence cannot contain two consecutive negative terms.

If the sequence of terms

$$
L_{i}, L_{i+1}, \ldots, L_{i+n}=L_{j}
$$

alternate in sign between positive and negative terms, then

$$
i=L_{i}>L_{i+2}>L_{i+4}>\cdots>L_{i+n}=L_{j}=j
$$

But $i<j$ and so the sequence cannot just alternate in sign between positive and negative terms.

Since the sequence

$$
L_{i}, L_{i+1}, \ldots, L_{i+n}=L_{j}
$$

cannot alternate in sign and cannot contain two consecutive negative terms, it follows that $L_{j-1} \geq 0$.

If $L_{j-1} \neq 1$ then $L_{j+1} \neq j+1$,

$$
\begin{aligned}
& L_{j+1} \geq j \\
& L_{j+2} \geq 2 j>j+2
\end{aligned}
$$

and

$$
L_{j+n}>j+n \text { for successive terms, }
$$

(i.e., $L_{k} \neq k$ for all $k>j$).

This leaves only the case $L_{i}=i, L_{j-1}=1, L_{j}=j$ to be considered. Working backward from L_{j} yields $L_{j}=j, L_{j-1}=1, L_{j-2}=j-1, L_{j-3}=2-j, L_{j-4}=2 j-3$, and in general

$$
L_{j-n}=(-1)^{n}\left(j F_{n-1}-F_{n}\right) .
$$

But then

$$
L_{i}=i=j F_{n-1}-F_{n}
$$

for some even integer $n \geq 2$. So

$$
\begin{aligned}
i=j F_{n-1}-F_{n} & \geq(i+2) F_{n-1}-F_{n} \\
& \geq i F_{n-1}+2 F_{n-1}-F_{n} \\
& \geq i+1
\end{aligned}
$$

But this is a contradiction and so $L_{j-1} \neq 1$.
Hence it is not possible to have three distinct values $i<j<k$, other than $1,2,3$, with $L_{i}=i, L_{j}=j$, and $L_{k}=k$.
(iv) In this section we address the following question:

Is it possible to have three terms of the sequence L_{k}, L_{m}, and L_{n} such that $L_{k}=i$, $L_{m}=i+1$, and $L_{n}=i+2$?
(a) Let $L_{k}=i$ and $L_{k+1}=1$. Then $L_{k+2}=i+1$ and $L_{k+3}=i+2$. To find initial values for L_{1} and L_{2} simply work backward from $L_{k}=i$ and $L_{k+1}=1$.

Example:
Suppose $L_{6}=18$ and $L_{7}=1$, then $L_{8}=19$ and $L_{9}=20$. Working backward yields $L_{5}=-17, L_{4}=35, L_{3}=-52, L_{2}=87$, and $L_{1}=-139$.
(b) Let $L_{n}=i+2$, and $L_{n+1}=-1$. Then $L_{n+2}=i+1$ and $L_{n+3}=i$. To find initial values for L_{1} and L_{2}, simply work backward from $L_{n}=i+1$ and $L_{n+1}=-1$.

Example:
Suppose $L_{6}=18$ and $L_{7}=-1$, then $L_{8}=17$ and $L_{9}=16$. Working backward yields $L_{5}=-19, L_{4}=37, L_{3}=-56, L_{2}=93$, and $L_{1}=-149$.
(v) Finally we close with a question for the reader:

Is it possible to have three terms of the sequence L_{k}, L_{m}, and L_{n} with no two consecutive such that $L_{k}=i, L_{m}=i+1$, and $L_{n}=i+2$ for some i ?
(i) and (ii) were also solved by the proposer.
42. [1992, 27] Proposed by Mohammad K. Azarian, University of Evansville, Evansville, Indiana.

Find the general solution to the differential equation

$$
\sum_{k=0}^{1990}(1990)^{k+1} y^{(k)}=0
$$

where $y^{(k)}$ represents the k th derivative of y.
Solution by the proposer and Jayanthi Ganapathy, University of Wisconsin - Oshkosh, Oshkosh, Wisconsin (independently).

The characteristic equation for this differential equation is

$$
(1990)^{1991} t^{1990}+(1990)^{1990} t^{1989}+\cdots+(1990)^{2} t+1990=0
$$

Next, dividing this equality by 1990 first, and then letting $u=1990 t$, we get

$$
\begin{equation*}
u^{1990}+u^{1989}+\cdots+u+1=0 \tag{1}
\end{equation*}
$$

Now, using the fact that

$$
x^{n}-1=(x-1)\left(x^{n-1}+x^{n-2}+\cdots+x+1\right)
$$

the roots of (1) are 1990 distinct complex roots of unity

$$
u_{k}=\cos \frac{2 k \pi}{1991}+i \sin \frac{2 k \pi}{1991}, k=1,2, \ldots, 1990
$$

Thus,

$$
t_{k}=\frac{u_{k}}{1990}
$$

But, since t_{1991-k} is the complex conjugate of t_{k}, the general solution of the given differential equation is

$$
y=\sum_{k=1}^{995} e^{\alpha_{k} x}\left(A_{k} \cos \beta_{k} x+B_{k} \sin \beta_{k} x\right)
$$

where

$$
\alpha_{k}=\frac{1}{1990} \cos \frac{2 k \pi}{1991} \text { and } \beta_{k}=\frac{1}{1990} \sin \frac{2 k \pi}{1991} .
$$

Also solved by Russell Euler, Northwest Missouri State University, Maryville, Missouri.
43. [1992, 28] Proposed by Curtis Cooper and Robert E. Kennedy, Central Missouri State University, Warrensburg, Missouri.

Let $n \geq 3$ be a positive integer and $m=\frac{n(n+1)}{2}$. Evaluate

$$
\sum_{\substack{1 \leq a, b, c \leq n \\ a, b, c \text { all distinct }}} \frac{a b c}{m(m-a)(m-a-b)} .
$$

Solution by Mangho Ahuja, Southeast Missouri State University, Cape Girardeau, Missouri, N. J. Kuenzi, University of Wisconsin-Oshkosh, Oshkosh, Wisconsin, and Russell Euler, Northwest Missouri State University, Maryville, Missouri (independently).

$$
\begin{aligned}
& \sum_{\substack{1 \leq a, b, c \leq n \\
a, b, c \text { all distinct }}} \frac{a b c}{m(m-a)(m-a-b)} \\
&=\sum_{\substack{1 \leq a, b \leq n \\
a, b \text { distinct }}} \frac{a b}{m(m-a)(m-a-b)} \sum_{\substack{1 \leq c \leq n \\
c \neq a, b}} c \\
&=\sum_{\substack{1 \leq a, b \leq n \\
a, b \text { distinct }}} \frac{a b}{m(m-a)(m-a-b)}(m-a-b) \\
&=\sum_{\substack{1 \leq a, b \leq n \\
a, b \text { distinct }}} \frac{a b}{m(m-a)} \\
&=\sum_{\substack{1 \leq a \leq n}} \frac{a}{m(m-a)} \sum_{1 \leq b \leq n}^{b \neq a} \\
&=\sum_{1 \leq a \leq n} \frac{a}{m(m-a)}(m-a) \\
&=\sum_{1 \leq a \leq n} \frac{a}{m}=\frac{1}{m} \sum_{1 \leq a \leq n} a=\frac{1}{m} m=1 .
\end{aligned}
$$

Generalized Solution by Russell Euler, Northwest Missouri State University, Maryville, Missouri.

$$
\begin{gathered}
\sum_{\substack{1 \leq a_{i} \leq n ; i=1, \cdots, r \\
a_{i} \text { 's all distinct }}} \frac{a_{1} a_{2} \cdots a_{r}}{m\left(m-a_{1}\right)\left(m-a_{1}-a_{2}\right) \cdots\left(m-a_{1}-a_{2}-\cdots-a_{r-1}\right)} \\
=\frac{1}{m} \sum_{a_{1}=1}^{n} \frac{a_{1}}{m-a_{1}} \sum_{\substack{a_{2}=1 \\
a_{2} \neq a_{1}}}^{n} \frac{a_{2}}{m-a_{1}-a_{2}} \sum_{\substack{a_{3}=1 \\
a_{3} \neq a_{2}, a_{3} \neq a_{1}}}^{n} \frac{a_{3}}{m-a_{1}-a_{2}-a_{3}} \\
\cdots \sum_{a_{r-1} \neq a_{i} ; 1=1, \cdots, r-2}^{n} \frac{a_{r-1}}{m-a_{1}-a_{2}-\cdots-a_{r-1}} \sum_{a_{r} \neq a_{i} ; i=1, \cdots, r-1}^{n} \\
=1 .
\end{gathered}
$$

Also solved by the proposers.
44. [1992, 28] Proposed by Kandasamy Muthuvel, University of Wisconsin-Oshkosh, Oshkosh, Wisconsin.

It is well known that the set of all real numbers \mathbb{R} is a field under ordinary addition and multiplication, the set of all positive real numbers \mathbb{R}^{+}is a subgroup of the multiplicative group \mathbb{R}^{*} (the set of all nonzero real numbers), $r^{2} \in \mathbb{R}^{+}$for all $r \in \mathbb{R}^{*}$, the characteristic of \mathbb{R} is 0 , and $\mathbb{R}^{+}-\mathbb{R}^{+}=\mathbb{R}$.

Prove the generalized result, "Let G be a subgroup of the multiplicative group F^{*} of a field F such that $f^{2} \in G$ for all f in F^{*}. If the characteristic of F is not equal to 2,3 , and 5 , then $G-G=F$."

Remark. The above result is not true if the characteristic of F is equal to 2,3 , or 5 .
Solution by the proposer.
It is immediate that $G-G \subseteq F$. To show $F \subseteq G-G$, we first let $f \in F$ such that $f \neq \pm 1$. Then $1+f, 1-f \in F^{*}$. Next, $2 \neq 0$ since the characteristic of F is not 2 . Thus $4=2^{2} \in G$. So $4^{-1} \in G$, since G is a group. Therefore,

$$
\begin{aligned}
f & =4^{-1} \cdot 4 f \\
& =4^{-1}\left((1+f)^{2}-(1-f)^{2}\right) \\
& =4^{-1}(1+f)^{2}-4^{-1}(1-f)^{2}
\end{aligned}
$$

so $f \in G-G$. Finally, we need to show $\pm 1 \in G-G$. First of all, $4^{-1} \neq \pm 1$ since the characteristic of F is not 3 and 5 , respectively. Thus

$$
1=4 \cdot 4^{-1}=\left(1+4^{-1}\right)^{2}-\left(1-4^{-1}\right)^{2}
$$

so $1 \in G-G$. Similarly, $-1 \in G-G$. Thus $F \subseteq G-G$. Therefore, $G-G=F$ and this completes the proof.

