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Each of the three types of non-degenerate conic sections: the ellipse, the hyperbola,

and the parabola, has its own reflection property. In this paper we present an elementary

proof that no other curve shares any of these three properties. This has been proved directly

in [2] §17.2.2.4., but the proof involves the first variation formula from differential geometry.

Our proof, rather, is based on the uniqueness of the solution of an initial-value problem for

an ordinary differential equation, and so makes an interesting and non-trivial application

of this uniqueness theorem. Our presentation, however, assumes that the students already

are familiar with the reflection properties of the conic curves. If not, this would be an

opportunity for the students to learn about these important properties and their applications

(e.g., the use of parabolic mirrors in telescopes, the parabolic reflectors of a car’s headlights).

An elegant proof of the reflection property of the ellipse is given in [3].

1. The Ellipse. Light emanating from one focus of an elliptic mirror will pass through

the other focus. Since the angle of incidence equals the angle of reflection, this is equivalent

to saying that the tangent line at a point P is the external bisector of the angle 6 F1PF2,

where F1 and F2 are the foci. Let us say that a curve r(t) = x(t)i + y(t)j satisfies the

reflection property (of the ellipse) if there are two points F1 and F2 such that the tangent

line at any point P on the curve is the external bisector of the angle 6 F1PF2. The external

bisector is unique, so this tangent line must coincide with the tangent line of the ellipse

passing through P with foci F1 and F2. The idea of the proof is that r is an integral curve

of the direction field whose direction at any point (except for the foci) is given by this

external bisector. If this field is sufficiently smooth, then there is only one integral curve

which passes through each point, and so this curve must coincide with an arc of the ellipse

which passes through this point and has these foci. What needs to be done, then, is to

show that the direction field satisfies the conditions of the uniqueness theorem for an initial

value problem.

Take the coordinates of the foci to be (±c, 0), c > 0, and compute the direction (i.e.,

the slope of the external bisector) at the point P (x0, y0) which does not coincide with one
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of the foci. To compute this direction consider the ellipse x2/a2 + y2/b2 = 1 with these

foci and passing through the point (x0, y0). Then A = a2 and B = b2 satisfy the equations

x2

0
/A+ y2

0
/B = 1 and A−B = c2. Solving this for B we obtain the quadratic equation

B2 + (c2 − x2

0
− y2

0
)B − y2

0
c2 = 0,

which has exactly one positive solution if y0 6= 0. The quadratic formula shows that A and

B are smooth functions of x0 and y0 away from the foci. The slope of the external bisector

(which is computed by implicitly differentiating the equation of the ellipse) at (x0, y0) is

given by dy/dx = −Bx0/Ay0, that is, the direction field is given by y′ = f(x, y) where

f(x, y) = −
B(x, y)x

A(x, y)y
.

Since f(x, y) and ∂f/∂y are continuous for y 6= 0, it follows by the basic theorem for initial-

value problems ([1] Theorem 2.2) that in the complement of the x-axis there is a unique

integral curve passing through any particular point. An integral curve of the direction

field in the complement of the segment F1F2 must be an ellipse, since an ellipse with these

foci intersects the x-axis in a point (x, 0) with |x| > c, and since there is only one ellipse

containing this point. The segment F1F2 can be considered a degenerate ellipse which

satisfies the reflection property with angle of incidence and angle of reflection equal to zero.

2. The Hyperbola. A tangent line of a hyperbola at P is the internal bisector of

6 F1PF2; Fi again being the foci. Essentially the same argument as for the ellipse shows that

no curve other than the hyperbola enjoys this property. The differential equation in this

case is dy/dx = b2x/a2y, where a2 and b2 are solutions of the equations x2

0
/a2 − y2

0
/b2 = 1

and a2 + b2 = c2.

3. The Parabola. We show that the parabola is the only curve with the following

reflection property: there is a ray R such that the reflection of any ray which is parallel to

R and has the same direction as R will pass through a certain point F (the focus). There is

no loss of generality in assuming that F is at the origin and that R is parallel to the y-axis

and is pointed downwards (i.e., in the negative direction).

Any parabola with focus at the origin and directrix given by y = −a, a > 0 enjoys

this reflection property. As in the case of the ellipse and hyperbola, the direction at any
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point (x0, y0) is determined by the reflection property and must coincide with the direction

of the tangent line of the parabola whose focus is at the origin, whose directrix is given

by y = −a, and which passes through the point (x0, y0). A parabola with this focus and

directrix passes through the points (±a, 0) and (0,−a/2), so it has the equation

(1) y +
a

2
=

1

2a
x2.

The slope of the tangent line at (x0, y0) is given by

(2) dy/dx =
x0

a
,

where a depends smoothly on x0 and y0 in the complement of the positive y-axis, and does

not vanish there. Indeed, solving the equation (1) gives a = −y +
√

x2 + y2.

The function f(x, y) = x/a(x, y) and its partial derivative ∂f/∂y are continuous in

the complement of the positive y-axis, so the basic existence and uniqueness theorem for

ordinary differential equations shows that the only curve satisfying the differential equation

(2) is a parabola. (The positive y-axis can be considered a degenerate parabola for which

the angle of incidence is 0.) We note that the result here can be used to show that the

circular paraboloid is the only surface for which all rays parallel to a given ray pass through

the same point after reflection by the surface.
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