A CHALLENGING AREA PROBLEM REVISITED

Robert L. Doucette
McNeese State University

Some years ago a problem was proposed in the American Mathematical Monthly [1] for which the editors received no correct solutions before the deadline. Although eventually a solution was published (under the title "One Tough Area Problem" [2]), it is relatively involved. I would like to present a quite different, simpler solution.

The problem is to find the area of the convex planar region

$$
R=\{P: P A+P B+P C \leq 2 a\},
$$

where $A B C$ is an equilateral triangle of perimeter $3 a$.
For convenience we take $a=1$. We start by imposing a rectangular coordinate system in which the coordinates of A, B, C are $(-1 / 2,0),(1 / 2,0)$, and $(0, \sqrt{3} / 2)$ respectively. As mentioned in [2], the convexity of R is relatively easy to show using the triangle inequality. Let ∂R denote the boundary of R. Clearly A, B and C are on ∂R. We may deduce that the portion of ∂R in quadrant I is a convex curve connecting C and B. A parameterization of this curve may be obtained by constructing a circle of radius $r, 0 \leq r \leq 1$, with center C; and an ellipse with foci A and B, and major axis of length $2-r$. If P is the point of intersection in quadrant I , then $P C=r$ and $P A+P B=2-r$, so that $P A+P B+P C=2$. See the figure below. As r goes from 0 to $1, P$ travels along ∂R from C to B. The coordinates (x, y) of P can be found by solving the system

$$
\begin{equation*}
x^{2}+(y-\sqrt{3} / 2)^{2}=r^{2} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\frac{x^{2}}{\left(\frac{2-r}{2}\right)^{2}}+\frac{y^{2}}{\left(\frac{2-r}{2}\right)^{2}-\left(\frac{1}{2}\right)^{2}}=1 . \tag{2}
\end{equation*}
$$

Multiplying (1) by $\left(\frac{2-r}{2}\right)^{-2}$ and subtracting the result from (2) we eliminate x^{2}, and find (after a bit of algebra) that $y=(1-r) \sqrt{3-r}\left(2-\frac{\sqrt{3}}{2} \sqrt{3-r}\right)$. Setting

$$
\begin{equation*}
s=\sqrt{3-r} \tag{3}
\end{equation*}
$$

we obtain

$$
\begin{equation*}
y=s\left(s^{2}-2\right)\left(2-\frac{\sqrt{3}}{2} s\right) \tag{4}
\end{equation*}
$$

From (1) we get $x^{2}=r^{2}-(y-\sqrt{3} / 2)^{2}=(r-y+\sqrt{3} / 2)(r+y-\sqrt{3} / 2)$. Therefore by (3) and (4) x^{2} equals

$$
\begin{equation*}
\left[\left(s^{2}-3\right)-s\left(s^{2}-2\right)\left(2-\frac{\sqrt{3}}{2} s\right)+\frac{\sqrt{3}}{2}\right]\left[\left(s^{2}-3\right)+s\left(s^{2}-2\right)\left(2-\frac{\sqrt{3}}{2} s\right)-\frac{\sqrt{3}}{2}\right] \tag{5}
\end{equation*}
$$

We may make use of the system (1)-(2) to factor (5) completely. From equation (1) we see that $r=0$ (and hence $s=\sqrt{3}$) implies that $x=0$. We find that $\sqrt{3}$ is a root of both factors in (5). In our search for other roots we note that by (2) $r=2$ (and hence $s=1$) also implies that $x=0$. We verify that 1 is a double root of the first factor in (5). Next we observe that in (4) $s=1$ gives $y=-2+\sqrt{3} / 2$. But, when $r=2$, from (1) $y=2+\sqrt{3} / 2$ is also a possibility. This value may be obtained in (4) by setting $s=-1$. We verify that $s=-1$ is a double root of the second factor in (5). From this we may factor (5):

$$
x^{2}=\frac{3}{4}(s-\sqrt{3})^{2}(s-1)^{2}(s+1)^{2}\left[4-\left(s-\frac{\sqrt{3}}{3}\right)^{2}\right] .
$$

Setting $2 t=s-\sqrt{3} / 3$, and simplifying we arrive at the following parameterization for the portion of ∂R in the first quadrant:

$$
\begin{align*}
& x(t)=\left(-8 \sqrt{3} t^{3}+4 \sqrt{3} t-\frac{4}{3}\right) \sqrt{1-t^{2}} \tag{6}\\
& y(t)=-8 \sqrt{3} t^{4}+8 \sqrt{3} t^{2}-\frac{4}{3} t-\frac{5 \sqrt{3}}{6} \tag{7}
\end{align*}
$$

where $r \in[0,1] \Longrightarrow s \in[\sqrt{2}, \sqrt{3}] \Longrightarrow t \in[(\sqrt{2}-\sqrt{3} / 3) / 2, \sqrt{3} / 3]$.
From calculus,

$$
\alpha:=\text { area of } R \text { in quadrant } \mathrm{I}=\int_{(\sqrt{2}-\sqrt{3} / 3) / 2}^{\sqrt{3} / 3} x(t) y^{\prime}(t) d t
$$

Once we determine the value of α the computation of $\operatorname{area}(R)$ follows. We may decompose R into the equilateral triangle $A B C$, and three regions each congruent to the region of R in quadrant I outside of the segment $C B$. This latter region has area $\alpha-\sqrt{3} / 8$ and hence

$$
\begin{equation*}
\operatorname{area}(R)=\operatorname{area}(\triangle A B C)+3(\alpha-\sqrt{3} / 8)=3 \alpha-\sqrt{3} / 8 \tag{8}
\end{equation*}
$$

From (6) and (7) we obtain

$$
\begin{equation*}
x(t) y^{\prime}(t)=16\left(48 t^{6}-48 t^{4}+\frac{10 \sqrt{3}}{3} t^{3}+12 t^{2}-\frac{5 \sqrt{3}}{3} t+\frac{1}{9}\right) \sqrt{1-t^{2}} \tag{9}
\end{equation*}
$$

The integrals $I_{n}:=\int t^{n} \sqrt{1-t^{2}} d t ; n=0,1,2,3,4,6$; are standard and are given by

$$
\begin{aligned}
& I_{0}=\frac{1}{2} t \sqrt{1-t^{2}}+\frac{1}{2} \sin ^{-1} t \\
& I_{1}=\frac{1}{3}\left(-1+t^{2}\right) \sqrt{1-t^{2}} \\
& I_{2}=\frac{1}{4}\left(-\frac{1}{2} t+t^{3}\right) \sqrt{1-t^{2}}+\frac{1}{8} \sin ^{-1} t \\
& I_{3}=\frac{1}{5}\left(-\frac{2}{3}-\frac{1}{3} t^{2}+t^{4}\right) \sqrt{1-t^{2}} \\
& I_{4}=\frac{1}{6}\left(-\frac{3}{8} t-\frac{1}{4} t^{3}+t^{5}\right) \sqrt{1-t^{2}}+\frac{1}{16} \sin ^{-1} t \\
& I_{6}=\frac{1}{8}\left(-\frac{5}{16} t-\frac{5}{24} t^{3}-\frac{1}{6} t^{5}+t^{7}\right) \sqrt{1-t^{2}}+\frac{5}{128} \sin ^{-1} t .
\end{aligned}
$$

Multiplying each of the I_{n} by the appropriate coefficient from (9) and combining terms we obtain

$$
\alpha=\left[16\left\{\left(\frac{\sqrt{3}}{9}-\frac{23}{72} t-\frac{7 \sqrt{3}}{9} t^{2}+\frac{15}{4} t^{3}+\frac{2 \sqrt{3}}{3} t^{4}-9 t^{5}+6 t^{7}\right) \sqrt{1-t^{2}}+\frac{31}{72} \sin ^{-1} t\right\}\right]_{(\sqrt{2}-\sqrt{3} / 3) / 2}^{\sqrt{3} / 3}
$$

By some tedious but straightforward computations we may evaluate this last expression, and using (8), we find that the desired area is

$$
-\frac{10 \sqrt{2}}{9}+\left(\frac{187}{72}-\frac{89 \sqrt{6}}{72}\right) \sqrt{5+\sqrt{24}}+\frac{62}{3}\left[\sin ^{-1}\left(\frac{\sqrt{3}}{3}\right)-\sin ^{-1}\left(\frac{\sqrt{2}-\sqrt{3} / 3}{2}\right)\right]-\frac{\sqrt{3}}{8}
$$

References

1. E 2983, American Mathematical Monthly, 90 (1983), 54.
2. American Mathematical Monthly, 96 (1989), 642-645.

Figure.

