A GENERALIZED EXPONENTIAL FUNCTION

Russell Euler
Northwest Missouri State University

Let p be a positive integer. Using the ratio test, it can be shown that

$$
\begin{equation*}
S(p)=\sum_{n=0}^{\infty} \frac{x^{n}}{(p n)!} \tag{1}
\end{equation*}
$$

converges for $|x|<\infty$. This follows from the fact

$$
\lim _{n \rightarrow \infty} \frac{(p n)!}{(p(n+1))!}=0
$$

The purpose of this paper is to express (1) in terms of a hypergeometric function. The special functions that will be used are reviewed first.

The factorial function is defined by

$$
(a)_{n}=a(a+1) \cdots(a+n-1)
$$

for any a and for $n \geq 1$ and, $(a)_{0}=1$, for $a \neq 0$. In particular, $n!=(1)_{n}$ and, from page 9 of [1],

$$
(a)_{n k}=k^{n k} \prod_{i=1}^{k}\left(\frac{a+i-1}{k}\right)_{n} .
$$

So,

$$
\begin{aligned}
(p n)! & =(1)_{p n} \\
& =p^{p n}\left(\frac{1}{p}\right)_{n}\left(\frac{2}{p}\right)_{n} \cdots\left(\frac{p-1}{p}\right)_{n}\left(\frac{p}{p}\right)_{n} \\
& =p^{p n}\left(\frac{1}{p}\right)_{n}\left(\frac{2}{p}\right)_{n} \cdots\left(\frac{p-1}{p}\right)_{n}(1)_{n} \\
& =p^{p n}\left(\frac{1}{p}\right)_{n}\left(\frac{2}{p}\right)_{n} \cdots\left(\frac{p-1}{p}\right)_{n} n!
\end{aligned}
$$

The generalized hypergeometric function is defined by

$$
{ }_{p} F_{q}\left[a_{1}, \ldots, a_{p} ; b_{1}, \ldots, b_{q} ; x\right]=1+\sum_{n=1}^{\infty} \frac{\left(a_{1}\right)_{n} \cdots\left(a_{p}\right)_{n}}{\left(b_{1}\right)_{n} \cdots\left(b_{q}\right)_{n}} \cdot \frac{x^{n}}{n!}
$$

for all $b_{i} \neq 0,-1,-2, \ldots$. It is known that this series diverges for all $x \neq 0$ if $p>q+1$; converges for all x if $p \leq q$; and converges for $|x|<1$ if $p=q+1$. These facts can be established by using the ratio test.

Substituting identity (2) into (1) gives

$$
\begin{align*}
S(p) & =\sum_{n=0}^{\infty} \frac{x^{n}}{p^{p n}\left(\frac{1}{p}\right)_{n}\left(\frac{2}{p}\right)_{n} \cdots\left(\frac{p-1}{p}\right)_{n} n!} \\
& =\sum_{n=0}^{\infty} \frac{1}{\left(\frac{1}{p}\right)_{n}\left(\frac{2}{p}\right)_{n} \cdots\left(\frac{p-1}{p}\right)_{n}} \cdot \frac{\left(x / p^{p}\right)^{n}}{n!} \\
& ={ }_{0} F_{p-1}\left(-; \frac{1}{p}, \frac{2}{p}, \cdots, \frac{p-1}{p} ; \frac{x}{p^{p}}\right) \tag{3}
\end{align*}
$$

In particular, if $p=1$, then (1) is the series representation for e^{x} and (3) becomes

$$
S(1)={ }_{0} F_{0}(-;-; x)=e^{x} .
$$

This agrees with the identity $e^{z}={ }_{0} F_{0}(z)$ given on page 209 of [1].

Reference

1. Y. Luke, The Special Functions and Their Approximations, Vol. 1, Academic Press, 1969.
