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Abstract. To solve a discriminant analysis problem, linear programming has been

useful for finding a linear discriminant function. In this paper we present a mathematical

programming approach to find a nonlinear discriminant function. It is believed that a

nonlinear discriminant function can be more useful than a linear one.

1. Introduction. A discriminant analysis problem seeks a discriminant function f(x)

which is used to separate the given groups of vector-valued data G1, G2, . . . , Gm and

provides an allocation rule for placing future unclassified data into one of the groups.

In this paper we construct a nonlinear discriminant function using a linear program.

In fact, we construct a general polynomial, of degree n, in the vector x to be used as a

discriminant function. Clearly, a nonlinear discriminant function is more effective than a

linear one, since a linear function can be treated as a special case (n = 1) in the mentioned

polynomial.

In this paper, we assume that a subjective ranking (order relation) has been imposed

on the groups G1, G2, . . . , Gm. That is, for any two distinct groups of data Gi and Gj

either Gi is preferred to Gj or Gj is preferred to Gi. Without loss of generality, we may

assume that Gi is preferred to Gj whenever i > j. This order relation is denoted by writing

Gj ≺ Gi if i > j. Thus, we are given

G1 ≺ G2 ≺ · · · ≺ Gm.

This assumption arises in many problems and it is possible to use, in some cases,

artificial intelligence techniques to determine the subjective rankings discussed above in [5].

This will not be discussed in this paper, rather we will assume that the rankings have been

given.
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The problem to be considered is stated as follows.

Problem 1. Given m groups of vector-valued data (that is values in En) such that

(1) G1 ≺ G2 ≺ · · · ≺ Gm

(2) Gi = {xi
j ∈ En : j = 1, 2, . . . , li} where i = 1, 2, . . . ,m,

find a discriminant function f(x), and the appropriate intervals Ii = (Li, Ui], such that

i. Ii ∩ Ik = ∅, ∀ 1 ≤ i, k ≤ n, i 6= k.

ii. f(xi
j) ∈ Ii, ∀ j = 1, 2, . . . , li and ∀ i = 1, 2, . . . ,m.

iii. L1 < U1 < L2 < U2 < · · · < Lm < Um

Definition 2. The groups G1, G2, . . . , Gm are said to be separable if there exists a

function f(x) such that f(xi
j) ∈ Ii, ∀ j = 1, 2, . . . , li and ∀ i = 1, 2, . . . ,m provided that

(i), (ii), and (iii) above hold. Otherwise the groups are said to be nonseparable.

2. Model and Discussion. In the following f(x), x = (x1, x2, . . . , xn) is restricted

to the following form

f(x) =

n∑
j=0

ai1i2···inx
i1
1 xi2

2 · · ·xin
n where j = i1 + i2 + · · · in.

Determining the degree of the polynomial can be difficult, since there are no general

rules for doing this. It depends on the number of groups considered in the problem and

the number of data (observations) in each class. However, trial and error can provide good

information in determining n, the order of the discriminant polynomial (function). The

quantities xi in the objective function below are defined by

xi =

∑li
j=1 x

i
j

li
.

We may think of the xi’s as being the center of mass of li unit masses located at xi
j . This

then becomes the center of mass of the group Gi. For this reason we shall refer to the points

xi as centroids.

The model used is
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Q. P. 3. Maximize

m∑
i=1

m∑
j=i+1

∣∣f(xi)− f(xj)
∣∣+ 2K −

m∑
i=1

(Ui − Li)

subject to the constraints

i. −K ≤ Li ≤ f(xi
j) ≤ Ui ≤ K i = 1, 2, . . . ,m, j = 1, 2, . . . , li .

ii. 2K −
m∑
i=1

(Ui − Li) ≥ 0 .

We are finding the coefficient of the discriminant function, ai1i2···in , that will give

maximum separation to the values f(xi), and thus, lead to the most widely separated set

of disjoint intervals Ij . We also obtain the intervals [Li, Ui) to be of minimum length in the

sense that f(xi
j) = Li for some j and f(xi

j) = Ui for some (different) value of j.

The first term in the objective function is maximized by giving maximum separation

to the centroids. The second term in the objective function is maximized by making the

intervals [Li, Ui] as small as possible subject to the constraint (i). One can, later, properly

adjust the interval lengths to handle the future classification of new data.

Thus maximizing our objective function gives us the two properties that we sought

above. K is a properly selected constant that guarantees a bounded solution for the inter-

vals. In the example that follows a value of 100 was used, a larger or smaller value might

well be suitable for a different problem.

The advantage of this form of the problem is that it determines what might be called a

natural order for the intervals [Li, Ui] and removes any dependence upon the order relation

prescribed for the Gi in the original problem.

3. Example. In this example the discriminant function is a third order polynomial

in the two coordinates x and y that has the form

f(x) = a30x
3 + a21x

2y + a12xy
2 + a03y

3 + a20x
2 + a11xy + a02y

2 + a10x + a01y + a00.
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The data set used in this example is given below. The model was solved on Gino [5].

Data Set 4. The data is

i. G1 = {(1, 3), (2, 3), (2, 4), (3, 3), (4, 2)} x1 = (12/5, 3) .

ii. G2 = {(3, 4), (5, 4), (4, 5), (5, 5)} x2 = (17/4, 9/2) .

iii. G3 = {(2, 1), (3, 1), (2, 2), (3, 2)} x3 = (5/2, 3/2) .

The model results are presented in the table below.

interval item
[−11.012358,−9.749569] [L1, U1]
[−100.0,−69.838026] [L2, U2]
[61.543902, 100.0] [L3, U3]

Table 4

Separable Data

The constants for the solution polynomial are

constant value
a30 −4.159692
a21 −26.017895
a12 30.588933
a03 17.776081
a20 −66.177253
a11 −29.645071
a02 −71.670812
a10 274.182681
a01 145.165613
a00 −252.679563

Table 5

Solution Function Constants

In the following figure we show the data.
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Figure 1
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