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Abstract. In this paper a modification of the algorithm of Blevins and Stewart for

calculating an invariant subspace of diagonally dominant matrices is given. The relation

between the algorithm of Blevins and Stewart and our modified algorithm is essentially the

same as the relation between the Jacobi method and the Gauss-Seidel method in solving

linear systems iteratively.

1. Introduction. Let A be a real matrix of order n, and write A in the form

A = D + E,

where

D = diag(d1, d2, . . . , dn)

is the diagonal part of A. Following the definition in [1] we shall say that A is diagonally

dominant if

||E|| = σ||D||,

where σ < 1. Here || · || denotes the Frobenius matrix norm defined by

||C||2 =

m
∑

i=1

n
∑

j=1

c2ij ,

where C = (cij) is any real m× n matrix. In this paper we are concerned with algorithms

for computing an invariant subspace of A when σ << 1.

The calculation of an invariant subspace of diagonally dominant matrices arises in the

problem of refining systems of approximate eigenvectors. [1]
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Throughout this paper R
n denotes real Euclidean space of dimension n and R

m×n

denotes the set of m × n real matrices. Linear operators on a vector space, as opposed

to their matrix representations, are denoted by bold face letters. The superscript T will

denote the transpose of a given vector or a matrix.

For the linear operator T from R
m×n to R

k×l, we define the spectral norm of T by

||T||2 = sup
||P ||=1

||TP ||.

We note that for any matrices B and C regarded as operators, ||BC|| ≤ ||B||2||C|| and
||BC|| ≤ ||B||||C||2, whenever the product BC is defined. We also note that ||B||2 ≤ ||B||.

In section 2, we briefly summarize the main results of Blevins and Stewart [1]. In

section 3, we discuss some further results and give a modified algorithm of Blevins and

Stewart. In part 2 of this article, we will give some numerical results which demonstrate

the faster convergence of the modified algorithm.

2. The Main Results of Blevins and Stewart. Let A ∈ R
n×n be a diagonally

dominant matrix. There is a natural correspondence between the eigenvectors of A and

those of D, since A is a diagonally dominant matrix. If di is distinct from the other

elements of D and if σ is sufficiently small, then the Gerschgorin theorem shows that there

is a unique eigenvalue of A which is near di. Since the eigenvector corresponding to the

distinct eigenvalue is a continuous function of the entries of the matrix (see [5], p. 67), if the

ith components of the corresponding eigenvectors of D and A are normalized to unity the

other components of the eigenvectors of A must be small. For definiteness we shall compare

the eigenvectors corresponding to the diagonal element d1. If we write these eigenvectors

of D and A in the forms (1, 0)T and (1, pT )T , respectively, then p ∈ R
n−1 is small.

The first step is to find the equation satisfied by p. Because (1, pT )T is an eigenvector

of A, the vector A(1, pT )T lies in the same direction as (1, pT )T . But the matrix

(

−pT

In−1

)
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has n − 1 linearly independent columns, all of which are orthogonal to (1, pT )T . Here Ik

denotes the identity matrix in R
k×k. It follows that

(1)

(

−pT

In−1

)T

A

(

1
p

)

= 0.

If we partition A in the form

A =

(

d1 ǫT12
ǫ21 D2 + E22

)

,

then (1) becomes

(2) Tp = ǫ21 − pǫT12p,

where T is the matrix T = d1In−1 − (D2 + E22).

Any method for solving the nonlinear equation (2) for p is effectively a method for

computing the eigenvector corresponding to the eigenvalue near to d1. In theory, this is not

difficult to do. In [4] it is shown that under the following condition,

(3) ||T−1||22||ǫ21||||ǫ12|| <
1

4
,

the sequence defined by

(4) Tpk+1 = ǫ21 − pkǫ
T
12pk, p0 = 0

converges to a solution of (2). As a practical method, however, this iteration has two

drawbacks. First, condition (3) may not be satisfied, that is, d1 may not be sufficiently well

separated from the other diagonal elements of A. Second, the solution of equation (4) for

pk+1 is expensive.

Blevins and Stewart disposed of the first problem by showing how to find an invariant

subspace corresponding to a cluster of close eigenvalues. Then they disposed of the second

problem by using an approximated inverse of T .
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To explain the idea of Blevins and Stewart we define the following.

Definition 1. Let R(A) denote the column space of the matrix A.

Definition 2. For a subspace Ω ⊆ R
n, let dim(Ω) denote the dimension of the subspace

Ω.

Definition 3. A subspace Ω ⊆ R
n is an invariant subspace of A if AΩ ⊆ Ω.

We note that an eigenvector of A spans an invariant subspace of dimension unity. In

order to compute an invariant subspace Ω of A, Blevins and Stewart set up an equation

analogous to (2) for a basis for Ω. The following lemma indicates how this was done.

Lemma 4. Let A ∈ R
n×n and letX = [X1 X2] be such thatX1 ∈ R

n×l, X2 ∈ Rn×(n−l),

XT
1 X2 = 0 and the columns of X1(X2) are linearly independent. Then a necessary and

sufficient condition that R(X1) be an invariant subspace of A is

(5) XT
2 AX1 = 0.

Proof. This lemma is a modification of the Lemma 3.1 in [1]. Since

dim(R(X1)) + dim(R(X2)) = n

and XT
1 X2 = 0, R(X2) is the orthogonal complement of R(X1) in R

n. The remaining proof

is identical with the proof given in [1].

For definiteness suppose that the first l diagonal elements of A form a cluster that is

well separated from the other diagonal elements, and partition A in the form

A =

(

A11 A12

A21 A22

)

=

(

D1 + E11 E12

E21 D2 + E22

)

,

where D1 ∈ R
l×l. And they attempted to find a basis for an invariant subspace of A that

in some sense corresponds to the matrix D1.

Because E21 is presumed small, equation (5) is very nearly satisfied by the matrix

X =

(

Il 0
0 In−l

)

.
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This suggests that we seek X in the form

X = [X1 X2] =

(

Il −PT

P In−l

)

,

where P ∈ R
(n−l)×l and ||P || is small. Note that the columns of X1(X2) are linearly

independent and XT
1 X2 = 0. Hence, by Lemma 4 the necessary and sufficient condition

that R(X1) be an invariant subspace of A is that

XT
2 AX1 = 0.

With the partitions of A and X , the above equation becomes

(6) PA11 −A22P = E21 − PE12P.

Then they defined the linear operator T:R(n−l)×l → R
(n−l)×l by

TP = PA11 −A22P.

So equation (6) becomes

(7) TP = E21 − PE12P.

Equation (7) is perfectly analogous to equation (2), and it has a small solution under

analogous conditions. Since l is unrestricted, one is free to augment D1 until the conditions

for the existence of a solution are satisfied, which disposes of the problem of very close

diagonal elements.

Equation (7) can be solved by an iterative process analogous to (4); however, each

iteration requires the solution of an equation of the form TP = Q, which is prohibitively

expensive, even when l = 1. However, T can be written T = D+E, where

(8) DP = PD1 −D2P.

and

(9) EP = PE11 − E22P.
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Then they proposed the following iterative process to solve equation (7).

Algorithm 5.

(1) P0 = 0

(2) For k = 0, 1, . . .

Pk+1 = Φ(Pk),

where

(10) Φ(P ) = D−1(E21 − PE12P −EP ).

Since E11 and E22 are small, the operator D is near the operator T. Since D1 and D2

are diagonal matrices, the equation of the form DP = Q can be easily solved. In fact, the

matrix representation of the linear operator D is a diagonal matrix. This can be seen as

follows.

Suppose DP = Q. Let P = (pij) and Q = (qij), l + 1 ≤ i ≤ n, 1 ≤ j ≤ l. Here we

shifted the index i by l for notational convenience. From equation (8) we have

PD1 −D2P = Q.

This equation is equivalent to

(11) (dj − di)pij = qij , l + 1 ≤ i ≤ n, 1 ≤ j ≤ l.

Note that qij depends only on pij , l + 1 ≤ i ≤ n, 1 ≤ j ≤ l. This means that the matrix

representation of the linear operator D is a diagonal matrix.

The iteration defined by Algorithm 5 converges to a solution of equation (7) under

rather general conditions. They proved the following Theorem.

Theorem 6. Let η = ||E12||, γ = ||E21||, ǫ = ||E||2, and δ = ||D−1||−1
2 . Then if

(12) δ − ǫ > 2
√
ηγ,

the sequence Pk defined by Algorithm 5 converges to a solution P ∗ of equation (7) satisfying

(13) ||P ∗|| ≤ 2γ

δ − ǫ
.
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Moreover

(14) ||P ∗ − Pk|| ≤
ρ

1− ρ
||Pk − Pk−1||, k = 1, 2, . . . ,

and

(15) ||Pk+1 − Pk|| ≤ ρ||Pk − Pk−1||, k = 1, 2, . . . ,

where

(16) ρ =
ǫ

δ
+

4ηγ

δ(δ − ǫ)
< 1.

To find out eigenvalues and eigenvectors from the given invariant subspace, they also

proved the following theorem.

Theorem 7. Let P ∗ be determined as in Theorem 6. Then the eigenvalues of A cor-

responding to the invariant subspace determined by P ∗ are the eigenvalues of the ma-

trix A11 + E12P
∗. Moreover, if the columns of Z form a complete set of eigenvectors for

A11 + E12P
∗, the corresponding eigenvectors of A are the columns of the matrix

(

I
P ∗

)

Z =

(

Z
P ∗Z

)

.

3. A Modified Algorithm. The idea of proving Theorem 6 in [1] is as follows. First,

it was shown that all the iterates Pk generated by Algorithm 5 remain in the region defined

by (13). Second, it was shown that the function Φ is a contraction, with constant ρ, in

that region. Then the result with error bounds (14) and (15) follow from a variant of the

contraction mapping theorem.

But we can prove a stronger result by using the standard contraction mapping theorem.

Theorem 8. Contraction Mapping Theorem.

Suppose that G:D ⊆ R
n → R

n maps a closed set D0 ⊆ D into itself and that

||Gx−Gy|| ≤ ρ||x− y||, x, y ∈ D0,
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for some ρ < 1. Then, for any x0 ∈ D0, the sequence generated by

xk+1 = Gxk, k = 0, 1, . . . ,

converges to the unique fixed point x∗ of G (that is, G(x∗) = x∗), in D0 and

||x∗ − xk|| ≤
ρ

1− ρ
||xk − xk−1||, k = 1, 2, . . . .

Proof. (See [3], p. 385) . Let

(17) Γ =
{

P ∈ R
(n−l)×l : ||P || ≤ 2γ

δ − ǫ

}

.

By using the above standard Contraction Mapping Theorem, we can improve Theorem

6 as follows.

Theorem 9. Let η = ||E12||, γ = ||E21||, ǫ = ||E||2, and δ = ||D−1||−1
2 . If

(18) δ − ǫ > 2
√
ηγ,

then, for any P0 ∈ Γ, the sequence Pk defined by Pk+1 = Φ(Pk), k = 0, 1, . . . , converges to

the unique solution P ∗ of equation (7) in Γ. Moreover

(19) ||P ∗ − Pk|| ≤
ρ

1− ρ
||Pk − Pk−1||, k = 1, 2, . . . ,

and

(20) ||Pk+1 − Pk|| ≤ ρ||Pk − Pk−1||, k = 1, 2, . . . ,

where

(21) ρ =
ǫ

δ
+

4ηγ

δ(δ − ǫ)
< 1.

Proof. The fact that Φ is a contraction in Γ has been established in [1], with the

contraction constant ρ described in the relation (21). Clearly Γ is a closed set in R
(n−l)×l.

Now we establish the fact that Φ(Γ) ⊆ Γ. Suppose that ||P || ≤ 2γ/(δ − ǫ) and

||Φ(P )|| > 2γ/(δ − ǫ).
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Then using relation (10) we obtain

2γ

δ − ǫ
< ||Φ(P )|| ≤ 1

δ

(

γ + η||P ||2 + ǫ||P ||
)

≤ 1

δ

[

γ + η

(

2γ

δ − ǫ

)2

+ ǫ

(

2γ

δ − ǫ

)

]

.

Equivalently,

2δ(δ − ǫ) < (δ − ǫ)2 + 4ηγ + 2ǫ(δ − ǫ).

However, it can be seen easily by using the assumption δ − ǫ > 2
√
ηγ that the right hand

side of the above inequality is less than 2δ(δ − ǫ). So we obtain a contradiction. It follows

that Φ(Γ) ⊆ Γ. Hence, by the Contraction Mapping Theorem the sequence {Pk} converges

to the unique fixed point P ∗ of Φ in Γ. This means that P ∗ is the unique solution of

P ∗ = Φ(P ∗) in Γ. By using the definition of Φ in (10) we see that P ∗ is the unique solution

of equation (7) in Γ.

Remark 10. The differences between Theorem 6 and Theorem 9 are the following.

First, Theorem 9 gives the information that P ∗ is the unique solution of (7) in Γ, whereas

Theorem 6 does not. Second, in Theorem 6 P0 has to be 0, whereas in Theorem 9, P0 can

be any element in Γ. This fact will be used crucially in our modified algorithm.

Now we are going to suggest a modified algorithm. Recall that ((8), (9))

T = D+E,

where

DP = PD1 −D2P,

and

EP = PE11 − E22P.

Now we let

T = L+D+U,

where

LP = PL1 − L2P,
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and

UP = PU1 − U2P.

Here L1(U1) and L2(U2) are strictly lower (upper) triangular parts of A11 and A22, respec-

tively. We note that L1(U1) and L2(U2) can also be viewed as the strictly lower (upper)

triangular parts of E11 and E22, respectively.

Then the corresponding algorithm to Algorithm 5, based on the above LDU splitting

of T, is

Algorithm 10.

(1) P 0 = 0

(2) For k = 0, 1, . . . ,

P k+1 = Ψ(P k),

where

(22) Ψ(P ) = (D+ L)−1
(

E21 − PE12P −UP
)

.

Of course, we determine P k+1 by solving

(23) (D+ L)P k+1 = E21 − P kE12P k −UP k,

which is easy to solve, since (D+ L)P = P (D1 +L1)− (D2 + L2)P and Di +Li is a lower

triangular matrix for i = 1, 2. In fact, there is a lower triangular matrix representation of

the operator D+ L. This can be seen as follows.

Suppose (D+ L)P = Q. Then we have

(24) P (D1 + L1)− (D2 + L2)P = Q.

As before we let P = (pij) and Q = (qij), l + 1 ≤ i ≤ n, 1 ≤ j ≤ l. We also let L1 = (lij),

l ≤ i, j ≤ l, and L2 = (lij), l + 1 ≤ i, j ≤ n. If we use the fact that L1 and L2 are strictly

lower triangular matrices, equation (24) is equivalent to

(25) qij = (dj − di)pij −
i−1
∑

k=l+1

likpkj +

l
∑

k=j+1

piklkj , l + 1 ≤ i ≤ n, 1 ≤ j ≤ l.

Here the empty sums are zero.
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Now we identify any matrix V = (vij) ∈ R
(n−l)×l, l + 1 ≤ i ≤ n, 1 ≤ j ≤ l, with the

long vector

V = (vl+1,l, vl+2,l, . . . , vn,l; vl+1,l−1, vl+2,l−1, . . . , vn,l−1; . . . ; vl+1,1, vl+2,1, . . . , vn,1)
T

∈ R
l(n−l).(26)

That is, we order vij by the following principles. For any two elements of vi1j1 and vi2j2 of

V , vi1j1 precedes vi2j2 if and only if one of the following conditions holds:

(1) j1 > j2

(2) j1 = j2 and i1 < i2.

From equation (25) we note that qij depends only on pik for which j ≤ k ≤ l and pkj

for which l+1 ≤ k ≤ i. Hence, according to our ordering qij depends only on pij and all the

elements that precede it. This means that if we identify R
(n−l)×l to R

l(n−l) with the above

ordering, the matrix representation of D+L is a lower triangular matrix in R
l(n−l)×l(n−l).

So equation (23) is easy to solve. Henceforth we shall use the ordering defined by relation

(26).

We note that the cost of calculating P k+1 from P k by using Algorithm 10 is exactly the

same as calculating Pk+1 from Pk using Algorithm 5 except calculating P 1 from P 0 = 0,

which is more expensive than calculating P1 from P0 = 0.

The relation between Algorithm 5 and Algorithm 10 is essentially the same as the

relation between the Jacobi method and the Gauss-Seidel method in solving linear systems

iteratively. It is well known that in many applications the Gauss-Seidel method is faster

than the Jacobi method (see [2], p. 324). In part 2 we will see numerically that Algorithm

10 is faster than Algorithm 5.

However, to establish a rigorous convergence criterion of Algorithm 10 we need to

compute δ = ||(D + L)−1||−1
2 , which is prohibitively expensive to calculate. So we suggest

the following algorithm.

Algorithm 11.

(1) P 0 = 0

(2) For k = 0, 1, . . . ,

P k+1 = Ψ(P k).

If ||P k+1|| > 2γ/(δ − ǫ) or ||P k+1 − P k|| > ρ||P k − P k−1|| (k ≥ 1),

go to (3);

otherwise
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go to (2).

(3) For j = k, k + 1, . . . ,

P j+1 = Φ(P j).

Remark 11. In step (2) the condition ||P k+1|| > 2γ/(δ − ǫ) means that {P k}∞k=0 does

not converge to P ∗, and the condition ||P k+1 − P k|| > ρ||P k − P k−1|| (k ≥ 1) means

that {Pk} generated by Algorithm 5 will converge to P ∗ faster than {P k} generated by

Algorithm 10.

Remark 12. The convergence of the sequence of {P k}∞k=0, generated by Algorithm 11,

is guaranteed by step (3) together with Theorem 9. So Algorithm 11 enjoys possible faster

convergence of Algorithm 10 as well as the guaranteed convergence of Algorithm 5.
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