SOLUTIONS

No problem is ever permanently closed. Any comments, new solutions, or new insights on old problems are always welcomed by the problem editor.
45. [1992, 88] Proposed by Mohammad K. Azarian, University of Evansville, Evansville, Indiana.

Let α, β, and γ be the direction angles of a vector R. Without using Lagrange multipliers, show that

$$
\cos \alpha+\cos \beta+\cos \gamma-2 \cos \alpha \cos \beta \cos \gamma \leq \sqrt{2}
$$

Solution by the proposer.
If we let

$$
\cos \alpha=\frac{a}{\sqrt{2}}, \quad \cos \beta=\frac{b}{\sqrt{2}}, \quad \cos \gamma=\frac{c}{\sqrt{2}},
$$

then we need to show that

$$
a+b+c-a b c \leq 2
$$

Thus, it is enough to prove that

$$
4\left(4-(a+b+c-a b c)^{2}\right) \geq 0
$$

But, using

$$
a^{2}+b^{2}+c^{2}=2\left(\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma\right)=2
$$

we have

$$
\begin{aligned}
4\left(4-(a+b+c-a b c)^{2}\right) & =(2-2 a b)(2-2 a c)(2-2 b c)+4(a b c)^{2} \\
& =\left(c^{2}+(a-b)^{2}\right)\left(b^{2}+(a-c)^{2}\right)\left(a^{2}+(b-c)^{2}\right)+4(a b c)^{2}
\end{aligned}
$$

This completes the proof. Note that equality holds if R is perpendicular to one of the axes and is making a 45-degree angle with each of the other two axes.
46. [1992, 88] Proposed by Robert E. Kennedy and Curtis Cooper, Central Missouri State University, Warrensburg, Missouri.

What is the leading digit of $2^{\text {googol }}$?
Solution by Kevin Robinson, Messiah College, Grantham, Pennsylvania and the proposers.

The leading digit of $2^{\text {googol }}$ is 2 . To see this, we observe that for any positive integer n,

$$
2^{n}=10^{\lfloor n \log 2\rfloor} \cdot 10^{\{n \log 2\}}
$$

where $\lfloor\cdot\rfloor$ denotes the greatest integer function, $\{\cdot\}$ denotes the fractional part operator, and $\log 2$ denotes the base 10 logarithm of 2 . By the above identity, we have the leading digit of 2^{n} is the units digit of $10^{\{n \log 2\}}$. Using the computer algebra system DERIVE, the first 120 digits of $\log 2$ are

$$
\begin{array}{r}
0.30102999566398119521 \\
37388947244930267681 \\
89881462108541310427 \\
46112710818927442450 \\
94869272521181861720 \\
40684477191430995379
\end{array}
$$

Therefore,

$$
10^{\{\text {googol } \log 2\}}=10^{\left\{10^{100} \log 2\right\}}=10^{\cdot 40684 \ldots}=2 \ldots
$$

Thus, the leading digit of $2^{\text {googol }}$ is 2 .
One incorrect solution was also received.
47. [1992, 88] Proposed by Russell Euler, Northwest Missouri State University, Maryville, Missouri.

Find all the solutions of

$$
(x-1) x(x+1)(x+2)=-1
$$

Solution I by Bob Prielipp, University of Wisconsin - Oshkosh, Oshkosh, Wisconsin; Robert L. Doucette, McNeese State University, Lake Charles, Louisiana; Kevin Robinson, Messiah College, Grantham, Pennsylvania; Joseph E. Chance, University of Texas - Pan American, Edinburg, Texas; Frank Flanigan, San Jose State University, San Jose, California; Kandasamy Muthuvel, University of Wisconsin - Oshkosh, Oshkosh, Wisconsin; Hertag T. Freitag, Roanoke, Virginia; J. Sriskandarajah, University of Wisconsin Center, Richland Center, Wisconsin and the proposer.

We may construct the following collection of equivalent equalities.

$$
\begin{gathered}
(x-1) x(x+1)(x+2)=-1 \\
x^{4}+2 x^{3}-x^{2}-2 x+1=0 \\
\left(x^{2}+x-1\right)^{2}=0 \\
x=\frac{-1+\sqrt{5}}{2} \text { (double root) or } x=\frac{-1-\sqrt{5}}{2} \text { (double root). }
\end{gathered}
$$

Solution II by Mohammad K. Azarian, University of Evansville, Evansville, Indiana and J. Sriskandarajah, University of Wisconsin Center, Richland Center, Wisconsin.

From the substitution

$$
x=\frac{u-1}{2},
$$

we obtain

$$
(x-1) x(x+1)(x+2)=\left(\frac{u-3}{2}\right)\left(\frac{u-1}{2}\right)\left(\frac{u+1}{2}\right)\left(\frac{u+3}{2}\right)=-1 .
$$

This implies that

$$
u^{4}-10 u^{2}+25=0 .
$$

Thus, $u^{2}=5$ is a double root. Hence, $u= \pm \sqrt{5}$. Therefore,

$$
x=\frac{ \pm \sqrt{5}-1}{2}
$$

where both of these roots are of multiplicity two.
Generalized Solution I by Joseph E. Chance and Donald P. Skow (jointly), University of Texas - Pan American, Edinburg, Texas.

Let k be an integer. Find all the solutions of

$$
(x-k)(x-k+1)(x-k+2)(x-k+3)=-1
$$

Let

$$
r=(x-k+1)(x-k+2) .
$$

Then

$$
r=(x-k)^{2}+3(x-k)+2 .
$$

Hence,

$$
r-2=(x-k)^{2}+3(x-k)=(x-k)(x-k+3) .
$$

Thus, the original equation becomes

$$
r(r-2)=-1
$$

This implies $r=1$. Hence,

$$
(x-k)^{2}+3(x-k)+1=0
$$

and so

$$
x-k=\frac{-3 \pm \sqrt{5}}{2}
$$

Therefore,

$$
x=\frac{-3 \pm \sqrt{5}+2 k}{2} .
$$

If $k=1$, we have the solution to problem 47.

Generalized Solution II by Frank Flanigan, San Jose State University, San Jose, California.

Let

$$
P(x)=\left(x+a_{1}\right)\left(x+a_{2}\right)\left(x+b_{1}\right)\left(x+b_{2}\right)+k
$$

Suppose $a_{1}, a_{2}, b_{1}, b_{2}$, and k are elements of a field F. Assume

$$
a_{1}+a_{2}=b_{1}+b_{2}=s
$$

Now, if $a=a_{1} a_{2}, b=b_{1} b_{2}$ and $y=x^{2}+s x$, then

$$
\begin{aligned}
P(x) & =\left(x^{2}+s x+a\right)\left(x^{2}+s x+b\right)+k \\
& =(y+a)(y+b)+k \\
& =y^{2}+(a+b) y+(a b+k) \\
& =(y-\sigma)(y-\tau) \\
& =\left(x^{2}+s x-\sigma\right)\left(x^{2}+s x-\tau\right)
\end{aligned}
$$

It is important that the roots σ, τ of the quadratic in y will lie in the original scalar field F of characteristic $\neq 2$ if and only if the discriminant

$$
\triangle=\triangle_{y}=(a-b)^{2}-4 k
$$

is a square in F. This is decisive for the irreducibility of $P(x)$ in the ring $F[x]$ of polynomials.
Problem 47 can now be solved by taking $F=\mathbb{R}$ and $a_{1}=0, a_{2}=1, b_{1}=-1, b_{2}=2$, and $k=1$.

Also solved by N. J. Kuenzi, University of Wisconsin - Oshkosh, Oshkosh, Wisconsin; J. Sriskandarajah, University of Wisconsin Center, Richland Center, Wisconsin (second solution) and Donald P. Skow, University of Texas - Pan American, Edinburg, Texas. Frank Flanigan commented that his general solution to $P(x)=0$ can be extended to the case when $P(x)$ involves the product of six, rather than four, suitable linear factors.
48. [1992, 89] Proposed by Alvin Beltramo (student), Central Missouri State University, Warrensburg, Missouri.

A standard deck of 52 cards is shuffled and then the cards are displayed, one at a time. Before each card is displayed, a person with a perfect memory guesses what each card is. How many cards can this person expect to guess correctly?

Solution I by Jenhua Tao, Central Missouri State University, Warrensburg, Missouri; Robert L. Doucette, McNeese State University, Lake Charles, Louisiana; K. L. D. Gunawardena, University of Wisconsin - Oshkosh, Oshkosh, Wisconsin; N. J. Kuenzi, University of Wisconsin - Oshkosh, Oshkosh, Wisconsin and Kevin Robinson, Messiah College, Grantham, Pennsylvania.

Define X_{i} to be the Bernoulli random variable for the i th card, i.e., $X_{i}=0$ if the person guesses the i th card incorrectly and $X_{i}=1$ if the person guesses the i th card correctly. Then

$$
X=X_{1}+X_{2}+\cdots+X_{52}
$$

is the number of cards this person guesses correctly. Thus,

$$
E(X)=E\left(X_{1}\right)+E\left(X_{2}\right)+\cdots+E\left(X_{52}\right)
$$

Since this person has perfect memory,

$$
P\left(X_{i}=1\right)=\frac{1}{52-i+1}
$$

and

$$
E\left(X_{i}\right)=\frac{1}{52-i+1}
$$

So,

$$
E(X)=\frac{1}{52}+\frac{1}{51}+\frac{1}{50}+\cdots+1 \doteq 4.538
$$

Generalized Solution I by K. L. D. Gunawardena, University of Wisconsin - Oshkosh, Oshkosh, Wisconsin.

Let $X_{i}=1$ if the i th card is guessed correctly and $X_{i}=0$ otherwise. Then

$$
S=\sum_{i=1}^{52} X_{i}
$$

denotes the total number of cards guessed correctly. Now suppose the person does not have a perfect memory, but he can remember the last k cards displayed prior to the displaying of the i th card. Thus,

$$
P\left(X_{i}=1\right)= \begin{cases}\frac{1}{53-i}, & 1 \leq i \leq k \\ \frac{1}{52-k}, & k+1 \leq i \leq 52\end{cases}
$$

Therefore,

$$
E(S)=\sum_{i=1}^{k} \frac{1}{53-i}+\sum_{i=k+1}^{52} \frac{1}{52-k}=1+\sum_{i=1}^{k} \frac{1}{53-i}
$$

Note that $k=51$ corresponds to a person with a perfect memory.

Generalized Solution II by the proposer. Suppose there are n cards, numbered 1 to n in the deck. Then the expected number of correct guesses by a person with a perfect memory is

$$
\sum_{k=1}^{n} \frac{1}{k}
$$

But,

$$
\sum_{k=1}^{n} \frac{1}{k}=\log n+\gamma+O\left(\frac{1}{n}\right)
$$

where \log is the natural logarithm and γ is Euler's constant. Thus, the expected number of correct guesses for a person with perfect memory, in a deck of n cards numbered 1 to n is asymptotic to $\log n$.

Also solved by the proposer. One incorrect solution was also received. Kevin Robinson and the proposer noted that the exact value is

$$
\frac{14063600165435720745359}{3099044504245996706400}
$$

