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Like the warp and woof of a piece of cloth, two sets may be thoroughly intermingled.

But how intermingled can disjoint sets be? With this in mind we ask the following question:

Can R
n be decomposed into countably-many (or even just two) disjoint

Lebesgue measurable sets such that the intersection of any one of these sets with

any continuous (non-constant) curve has positive one-dimensional Hausdorff mea-

sure (or, at least, positive Hausdorff dimension)? (For the definition of Hausdorff

measure and Hausdorff dimension, see, e.g., [1].)

In this note we show that the one-dimensional case is true, that is, we show that the

real line R can be decomposed into countably-many Lebesgue measurable sets such that the

intersection of any of these sets with any open interval has positive measure. (Decomposition

of R into two such sets was posed as a problem in [2, p. 59].)

We call a measurable subset E of an interval I an m-dense set (with respect to I) if

for any open interval I1 ⊂ I we have 0 < m(E ∩ I1), where m represents one-dimensional

Lebesgue measure. The one-dimensional problem is then whether R can be expressed as

the union of mutually-disjoint m-dense sets. It suffices to carry out the construction of

countably-manym-dense sets on the unit interval [0, 1), then extend these sets to be periodic

of period one. Suppose the following statement is true:

Any set B which is m-dense with respect to the unit interval is the
(1)

union of two disjoint m-dense sets C and D with m(D) = m(B)/2.

Then, starting with the unit interval and iterating this decomposition, we obtain

[0, 1) =

n⋃

1

Ai ∪Bn
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for all n ≥ 1, where B0 = [0, 1), and Bn, n ≥ 0, is the union of disjoint m-dense sets An+1

and Bn+1 such that m(Bn+1) = m(Bn)/2. Then, [0, 1) = ∪∞

1 Ai ∪ B∞, where B∞ has

measure 0 and so can be incorporated into any of the other sets. Thus, it suffices to prove

statement (1).

First, given a set B of positive measure contained in an interval I of length L, we define

a generalized Cantor set E = E(B, I, µ), 0 < µ < 1. Given δ, 0 < δ < L, choose {δn} so

that

(2) L = δ0 > δ1 > δ2 > · · · , δn → δ.

Put E0 = Ī. For n ≥ 0, En is constructed so that En is the union of 2n disjoint closed

intervals, each of length 2−nδn. Delete an open interval in the center of each of these 2n

intervals, so that each of the remaining 2n+1 intervals has length 2−n−1δn+1 and let En+1

be the union of these 2n+1 intervals. Then E1 ⊃ E2 ⊃ · · · ,m(En) = δn, and the generalized

Cantor set E = ∩∞

1 En has measure δ. Here δ is chosen so that m(E ∩B) = (1−µ)m(B) (a

continuity argument shows that this can be done). Thus, F = F (B, I, µ), the complement

of E with respect to I, is a dense open subset of I satisfying m(F ∩ B) = µm(B). (Note

that E and F depend on the choice of the sequence {δn}.)

We now give the proof of statement (1). Choose positive numbers µi < 1, i = 1, 2, . . . ,

such that
∏

∞

1 µi = 1/2. We define a decreasing sequence of open dense sets Dn contained

in the unit interval such that

(3) m(B ∩Dn) =
n∏

1

µi ·m(B).

The set D1 = F (B, [0, 1), µ1) is the union of disjoint open intervals I
(1)
j , j ≥ 1. Let

D2 =

∞⋃

j=1

F (B ∩ I
(1)
j , I

(1)
j , µ2).

Then, equation (3) is satisfied for n = 2, and D2 ⊂ D1. D2 is open so it is also the union

of disjoint open intervals I
(2)
j . Continuing this process we obtain the prescribed sequence

of open sets Dn.
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Let D = B ∩ (∩∞

1 Dn). We have m(D) = limm(Dn ∩B) = m(B)/2, since Dn ∩B form

a decreasing sequence. Next, we show that the sets C = B\D and D are m-dense subsets

of the unit interval provided that in (2) the term δ1 is always chosen larger than L/2. With

this proviso the subintervals I
(n)
j of Dn have length less than 2−n. Since Dn, n ≥ 1, is a

dense subset of [0, 1), any interval I ⊂ [0, 1) contains an interval of the form I
(n)
j for n

sufficiently large. But, by the construction,

m(D ∩ I) ≥ m(D ∩ I
(n)
j ) =

∞∏

n+1

µi ·m(B ∩ I
(n)
j ) > 0.

The above equality shows that m(D∩I
(n)
j ) < m(I

(n)
j ) so that m(C∩I) > 0. This completes

the proof of statement (1). Note that the decomposition of the unit interval into m-dense

sets Ai, the measure of Ai, i ≥ 2, can be made arbitrarily small by taking
∏

µi slightly less

than 1. A simple argument then shows that the real line can be decomposed into m-dense

sets, all but one of which has measure less than an arbitrarily assigned positive number.
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