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In a recent article in the MJMS [1], the construction, originally by Rudin & Shapiro

[2], of a trigonometric series that converges uniformly to a function f(t) which is continuous

on [0, 2π] was detailed. [1] includes a proof of the fact that the Fourier Series of f(t) fails

to converge absolutely.

In this paper we will take a closer look at this function f(t). In fact, we will prove

that f ∈ Lip 1
2
([0, 2π]), thus emphasizing the fact that 1

2 is the best possible value of α in

the established result of Bernstein’s: “If f ∈ Lipα([0, 2π]) for some α > 1
2 , then the Fourier

Series of f is absolutely convergent” ([2], Chapter I).

We give below some definitions and results from [1] that are relevant to our discussion

of f(t) in this article.

1) We defined sequences of trigonometric polynomials {Pm(t)}∞0 , {Qm(t)}∞0 on [0, 2π]

inductively by letting P0(t) = 1 = Q0(t). For m ≥ 0,

Pm+1(t) = Pm(t) + ei2
mtQm(t) and

Qm+1(t) = Pm(t)− ei2
mtQm(t).

2) For n ≥ 1, we defined the sequence of polynomials {Tn(t)}∞1 , by letting

Tn(t) = Pn(t)− Pn−1(t).

3) Finally, we defined a trigonometric series

∞
∑

n=1

2−nTn(t).
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This series converges uniformly on [0, 2π] to a continuous function f(t), which is the

main topic of discussion in this article.

In [1], we made the following observations:

4) |Tn(t)| ≤ 2n/2.

5) Tn(t) is a trigonometric polynomial of degree 2n − 1.

For the benefit of those readers who are unfamiliar with Lipα([0, 2π]), we provide some

definitions at this point:

6) For 0 < α ≤ 1, Lipα([0, 2π]) is the set of all 2π periodic, continuous complex valued

functions f(t) on [0, 2π] such that

sup
h 6=0,t

{

|f(t+ h)− f(t)|
|h|α

}

< ∞.

([2], Chapter I).

Finally, before we proceed with our proof of f ∈ Lip 1
2
([0, 2π]), we state a result of

Bernstein’s, that we will use in our discussion:

7) If P (t) is a trigonometric polynomial of degree n then

sup
t∈T

|P ′(t)| ≤ 2n
(

sup
t∈T

|P (t)|
)

where P ′(t) is the derivative of P . ([2], Chapter I or [3], Chapter III, Sec. 13).

Theorem. f ∈ Lip 1
2
([0, 2π]).

Proof. Fix h 6= 0. Choose an integer N > 0 such that 2−N < |h| ≤ 21−N . Then

(A) |f(t+ h)− f(t)| ≤ |S1(t)|+ |S2(t)|

where

S1(t) =
N
∑

n=1

2−n(Tn(t+ h)− Tn(t))
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and

S2(t) =

∞
∑

n=N+1

2−n(Tn(t+ h)− Tn(t)).

For any n where 0 < θ < h,

|Tn(t+ h)− Tn(t)| = |T ′
n(t+ θ)||h|,

≤ 2(2n − 1)|h|
(

sup
t∈[0,2π]

|Tn(t)|
)

< 2(2n)|h|2n

2 ,

using (7), (5), and (4). This implies

2−n|Tn(t+ h)− Tn(t)| < 2|h|2n

2 .

Hence,

|S1| ≤ 2|h|
( N
∑

n=1

2
n

2

)

= 2|h|2 1
2

(

2
N

2 − 1
)

√
2− 1

< 2|h|
√
2(
√
2 + 1)

√
2

1
√

|h|

= M1

√

|h|.(∗)
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Here, M1 is a constant. The last inequality follows by choosing N so that |h| ≤ 21−N which

implies that

2
N

2 <

√
2

√

|h|
.

Also, using (4)

|S2(t)| ≤
∞
∑

n=N+1

2−n(2)
(

2
n

2

)

= 2

( ∞
∑

n=N+1

2
−n

2

)

=
2 · 2−

(

N+1

2

)

(

1− 1√
2

)

= 2
(

2−
N

2

)

(
√
2 + 1)

< 2(
√
2 + 1)

√

|h|
= M2

√

|h|(∗∗)

Here, M2 is a constant. Also, the next to last inequality follows from the choice of N .

Finally, from (A), (∗), and (∗∗), we get

|f(t+ h)− f(t)| ≤ (M1 +M2)
√

|h|.

Thus,

|f(t+ h)− f(t)|
√

|h|
≤ M1 +M2.
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Since h 6= 0 is arbitrary, we conclude that

sup
h 6=0,t

{

|f(t+ h)− f(t)|
√

|h|

}

< ∞.

This completes the proof of our theorem.
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