AN EXAMPLE OF A FUNCTION IN LIP ${ }_{\frac{1}{2}}([0,2 \pi])$

WITH AN ABSOLUTELY NON-CONVERGENT FOURIER SERIES

Jayanthi Ganapathy
University of Wisconsin-Oshkosh

In a recent article in the MJMS [1], the construction, originally by Rudin \& Shapiro [2], of a trigonometric series that converges uniformly to a function $f(t)$ which is continuous on $[0,2 \pi]$ was detailed. [1] includes a proof of the fact that the Fourier Series of $f(t)$ fails to converge absolutely.

In this paper we will take a closer look at this function $f(t)$. In fact, we will prove that $f \in \operatorname{Lip}_{\frac{1}{2}}([0,2 \pi])$, thus emphasizing the fact that $\frac{1}{2}$ is the best possible value of α in the established result of Bernstein's: "If $f \in \operatorname{Lip}_{\alpha}([0,2 \pi])$ for some $\alpha>\frac{1}{2}$, then the Fourier Series of f is absolutely convergent" ([2], Chapter I).

We give below some definitions and results from [1] that are relevant to our discussion of $f(t)$ in this article.

1) We defined sequences of trigonometric polynomials $\left\{P_{m}(t)\right\}_{0}^{\infty},\left\{Q_{m}(t)\right\}_{0}^{\infty}$ on $[0,2 \pi]$ inductively by letting $P_{0}(t)=1=Q_{0}(t)$. For $m \geq 0$,

$$
\begin{aligned}
& P_{m+1}(t)=P_{m}(t)+e^{i 2^{m} t} Q_{m}(t) \text { and } \\
& Q_{m+1}(t)=P_{m}(t)-e^{i 2^{m} t} Q_{m}(t)
\end{aligned}
$$

2) For $n \geq 1$, we defined the sequence of polynomials $\left\{T_{n}(t)\right\}_{1}^{\infty}$, by letting

$$
T_{n}(t)=P_{n}(t)-P_{n-1}(t)
$$

3) Finally, we defined a trigonometric series

$$
\sum_{n=1}^{\infty} 2^{-n} T_{n}(t)
$$

This series converges uniformly on $[0,2 \pi]$ to a continuous function $f(t)$, which is the main topic of discussion in this article.

In [1], we made the following observations:
4) $\left|T_{n}(t)\right| \leq 2^{n / 2}$.
5) $T_{n}(t)$ is a trigonometric polynomial of degree $2^{n}-1$.

For the benefit of those readers who are unfamiliar with $\operatorname{Lip}_{\alpha}([0,2 \pi])$, we provide some definitions at this point:
6) For $0<\alpha \leq 1, \operatorname{Lip}_{\alpha}([0,2 \pi])$ is the set of all 2π periodic, continuous complex valued functions $f(t)$ on $[0,2 \pi]$ such that

$$
\sup _{h \neq 0, t}\left\{\frac{|f(t+h)-f(t)|}{|h|^{\alpha}}\right\}<\infty
$$

([2], Chapter I).
Finally, before we proceed with our proof of $f \in \operatorname{Lip}_{\frac{1}{2}}([0,2 \pi])$, we state a result of Bernstein's, that we will use in our discussion:
7) If $P(t)$ is a trigonometric polynomial of degree n then

$$
\sup _{t \in T}\left|P^{\prime}(t)\right| \leq 2 n\left(\sup _{t \in T}|P(t)|\right)
$$

where $P^{\prime}(t)$ is the derivative of P. ([2], Chapter I or [3], Chapter III, Sec. 13).

Theorem. $f \in \operatorname{Lip}_{\frac{1}{2}}([0,2 \pi])$.
Proof. Fix $h \neq 0$. Choose an integer $N>0$ such that $2^{-N}<|h| \leq 2^{1-N}$. Then

$$
\begin{equation*}
|f(t+h)-f(t)| \leq\left|S_{1}(t)\right|+\left|S_{2}(t)\right| \tag{A}
\end{equation*}
$$

where

$$
S_{1}(t)=\sum_{n=1}^{N} 2^{-n}\left(T_{n}(t+h)-T_{n}(t)\right)
$$

and

$$
S_{2}(t)=\sum_{n=N+1}^{\infty} 2^{-n}\left(T_{n}(t+h)-T_{n}(t)\right)
$$

For any n where $0<\theta<h$,

$$
\begin{aligned}
\left|T_{n}(t+h)-T_{n}(t)\right| & =\left|T_{n}^{\prime}(t+\theta)\right||h| \\
& \leq 2\left(2^{n}-1\right)|h|\left(\sup _{t \in[0,2 \pi]}\left|T_{n}(t)\right|\right) \\
& <2\left(2^{n}\right)|h| 2^{\frac{n}{2}}
\end{aligned}
$$

using (7), (5), and (4). This implies

$$
2^{-n}\left|T_{n}(t+h)-T_{n}(t)\right|<2|h| 2^{\frac{n}{2}}
$$

Hence,

$$
\begin{aligned}
\left|S_{1}\right| & \leq 2|h|\left(\sum_{n=1}^{N} 2^{\frac{n}{2}}\right) \\
& =2|h| 2^{\frac{1}{2}} \frac{\left(2^{\frac{N}{2}}-1\right)}{\sqrt{2}-1} \\
& <2|h| \sqrt{2}(\sqrt{2+1}) \sqrt{2} \frac{1}{\sqrt{|h|}} \\
& =M_{1} \sqrt{|h|}
\end{aligned}
$$

Here, M_{1} is a constant. The last inequality follows by choosing N so that $|h| \leq 2^{1-N}$ which implies that

$$
2^{\frac{N}{2}}<\frac{\sqrt{2}}{\sqrt{|h|}}
$$

Also, using (4)

$$
\begin{aligned}
\left|S_{2}(t)\right| & \leq \sum_{n=N+1}^{\infty} 2^{-n}(2)\left(2^{\frac{n}{2}}\right) \\
& =2\left(\sum_{n=N+1}^{\infty} 2^{\frac{-n}{2}}\right) \\
& =\frac{2 \cdot 2^{-\left(\frac{N+1}{2}\right)}}{\left(1-\frac{1}{\sqrt{2}}\right)} \\
& =2\left(2^{-\frac{N}{2}}\right)(\sqrt{2}+1) \\
& <2(\sqrt{2}+1) \sqrt{|h|} \\
& =M_{2} \sqrt{|h|}
\end{aligned}
$$

Here, M_{2} is a constant. Also, the next to last inequality follows from the choice of N. Finally, from $(\mathrm{A}),(*)$, and $(* *)$, we get

$$
|f(t+h)-f(t)| \leq\left(M_{1}+M_{2}\right) \sqrt{|h|} .
$$

Thus,

$$
\frac{|f(t+h)-f(t)|}{\sqrt{|h|}} \leq M_{1}+M_{2}
$$

Since $h \neq 0$ is arbitrary, we conclude that

$$
\sup _{h \neq 0, t}\left\{\frac{|f(t+h)-f(t)|}{\sqrt{|h|}}\right\}<\infty
$$

This completes the proof of our theorem.

References

1. J. Ganapathy, "Some Thoughts on the Absolute Convergence of a Trigonometric Series," Missouri Journal of Mathematical Sciences, 3 (1991), 2-11.
2. Y. Katznelson, An Introduction to Harmonic Analysis, John Wiley and Sons, 1968.
3. A. Zygmund, Trigonometric Series, Vol. I, Cambridge University Press, 1968.
