
SOLUTIONS

No problem is ever permanently closed. Any comments, new solutions, or new insights
on old problems are always welcomed by the problem editor.

49. [1992, 145] Proposed by Mohammad K. Azarian, University of Evansville,
Evansville, Indiana.

Let

A =

n∑
i=1

n∑
j=1

m∑
k=1

sin

(
iπ

3

)
cos

(
jπ

3

)
csc

(
2kπ

3

)
.

Show that

A ≤ 4
√

3

3
if m is odd and A = 0 if m is even.

Solution I by Bob Prielipp, University of Wisconsin-Oshkosh, Oshkosh, Wisconsin.

Our solution will use the following known results.

(1)

n∑
k=1

cos kx = sin
nx

2
cos(n+ 1)

x

2
/ sin

x

2

(2)

n∑
k=1

sin kx = sin
nx

2
sin(n+ 1)

x

2
/ sin

x

2

for every x that is not a multiple of 2π.
(For a proof of these results, see p. 366 of Apostol; Mathematical Analysis: A Modern
Approach to Advanced Calculus; Addison-Wesley Publishing Company, Inc.; Reading Mass-
achusetts; 1957.)
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A =

n∑
i=1

n∑
j=1

m∑
k=1

sin

(
iπ

3

)
cos

(
jπ

3

)
csc

(
2kπ

3

)

=

n∑
i=1

sin

(
iπ

3

) n∑
j=1

cos

(
jπ

3

) m∑
k=1

csc

(
2kπ

3

)
.

If m is even,

m∑
k=1

csc

(
2kπ

3

)
= 0

so A = 0. If m is odd,

m∑
k=1

csc

(
2kπ

3

)
= csc

(
2π

3

)
=

2
√

3

3
.

Thus,

A =
2
√

3

3

n∑
i=1

sin

(
iπ

3

) n∑
j=1

cos

(
jπ

3

)

=
2
√

3

3

sin nπ
6 sin (n+1)π

6

sin(π6 )

sin nπ
6 cos (n+1)π

6

sin (π6 )

=
4
√

3

3
sin

nπ

6
sin

nπ

6
sin

(n+ 1)π

3

≤ 4
√

3

3
· 1 · 1 · 1 =

4
√

3

3
.
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Solution II by the proposer.

It is known [1] that for any real number x

(1− cosx)

∣∣∣∣∣
n∑
i=1

cos ix

∣∣∣∣∣
∣∣∣∣∣
n∑
i=1

sin ix

∣∣∣∣∣ ≤ 1.

Thus, for x = π
3 we get

(1)
n∑
i=1

n∑
j=1

sin

(
iπ

3

)
cos

(
jπ

3

)
≤

∣∣∣∣∣
n∑
i=1

sin

(
iπ

3

)∣∣∣∣∣
∣∣∣∣∣
n∑
j=1

cos

(
jπ

3

)∣∣∣∣∣ ≤ 2.

Also, since
cot(2k−1x)− cot(2kx) = csc(2kx),

we have

m∑
k=1

csc(2kx) = cotx− cot(2mx),

and for x = π
3 we obtain

(2)

m∑
k=1

csc

(
2kπ

3

)
= cot

π

3
− cot

(
2mπ

3

)
=

{
0, if m is even;
2
√
3

3 , if m is odd.

Finally, from (1) and (2) we achieve the desired result.

References

1. Problem # 379, College Mathematics Journal, M. K. Azarian (proposer) and Harry
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135



50. [1992, 145] Proposed by Curtis Cooper and Robert E. Kennedy, Central Missouri
State University, Warrensburg, Missouri.

How many ways can a 3× 1992 floor be tiled with 1× 2 indistinguishable tiles?

Solution by Lamarr Widmer, Messiah College, Grantham, Pennsylvania and N. J.
Kuenzi, University of Wisconsin-Oshkosh, Oshkosh, Wisconsin.

We will let an denote the number of ways a 3 × 2n floor can be tiled with dominoes
(1× 2 tiles). So our problem is to determine a996.

We can easily check that a1 = 3.
Now a tiling of a 3 × 2n rectangle can be separated into two tilings of smaller 3 × 2i

and 3× 2j rectangles like this:

where 2i+ 2j = 2n, unless it has a row of horizontal dominoes through its center like this:

To see why this is true, note that if there is no such subdivision, then each of the
vertical lines where this would be possible must have a domino lying across it. But since
there are an even number of 1× 1 squares on either side of such a vertical dividing line, it
must actually have two dominoes lying across it. It is easy to see what goes wrong if we try
to have these two dominoes in the top and bottom rows. Hence, one of them must be in the
middle row. It is easy to check that there are exactly two possible tilings which have this
horizontal row of dominoes through their center.
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We first wish to deduce a general recursive formula for an. We will illustrate the general
recursive principle by means of two examples. We see that there are 9 ways to tile a 3× 4
floor by putting two tilings of the 3× 2 floor side by side plus two ways to tile it with the
row of horizontal dominoes through the center.

Hence a2 = 11.
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A similar line of reasoning can be used to compute a5. The following diagram relates
a5 to its preceding terms.
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Therefore,
a5 = 3a4 + 2a3 + 2a2 + 2a1 + 2.

In general, we have that

an = 3an−1 + 2an−2 + 2an−3 + 2an−4 + 2an−5 + · · ·+ 2a1 + 2.

From this relation we easily derive

an = 4an−1 − an−2.
Using the method explained in most discrete mathematics texts, this second order linear
recurrence relation yields the explicit formula

an =

(
1

2
+

√
3

6

)
(2 +

√
3)n +

(
1

2
−
√

3

6

)
(2−

√
3)n.

So we have

a996 =

(
1

2
+

√
3

6

)
(2 +

√
3)996 +

(
1

2
−
√

3

6

)
(2−

√
3)996

.
= 3.603 · 10569.

Also solved by Stanley Rabinowitz, Westford, Massachusetts and the proposers. Rabi-
nowitz and Kuenzi noted that

an =

⌈(
1

2
+

√
3

6

)
(2 +

√
3)n

⌉

for n ≥ 1. In addition, Rabinowitz counted and found that the number of ways to tile a
3× 1992 floor with 1× 2 indistinguishable tiles is

3602927240267776227266301236128046740727140862109428584846

6187989288272765115658745939578174574051042816802245305844

6362912165834628327000163077343071409300022653365714290771

3843129066863598893786810870199167529198469052917243505662

2862052760951873433815826479063106067394965812084240925088

9591061988939195168722611435717987995627725683246896965503

4010414559073855237148010444891336978160899220084149304617

3795108177928277627669779323982081706670963802388825487599

4813205199045365601920341350977195999536039979037705807509

971867586054886929272135211907110350307848485081.
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Rabinowitz also noted that the problem can be found in a couple of different places. One is
a book by W. G. Kelley and A. C. Peterson entitled Difference Equations: An Introduction
with Applications. This book is published by Academic Press, Inc. and the problem can be
found on pages 89–91. The other place is Problem E2417 in the American Mathematical
Monthly. The problem was proposed by Ioan Tomescu and a solution by D. Ž. Djoković was
published in volume 81 (1974), pp. 522–523.

51. [1992, 145] Proposed by Alvin Beltramo (student), Central Missouri State Univer-
sity, Warrensburg, Missouri.

A standard deck of 52 cards is shuffled and two different denominations, e.g., king and
five, are chosen. What is the probability that two cards, one from each denomination, are
consecutive in the deck?

Solution by the proposer.

Label one of the denominations 1 and the other 2. Label the other cards in the deck 0.
Now any arrangement of the deck will have a corresponding sequence of 44 0’s, 4 1’s, and 4
2’s associated with it. Moreover, each sequence of 44 0’s, 4 1’s, and 4 2’s will be the unique
sequence associated with 44! · 4! · 4! different arrangements of the deck. We will proceed to
count the number of different sequences of 44 0’s, 4 1’s, and 4 2’s which do not have a 1 and
2 adjacent. If x denotes this number, then x · 44! · 4! · 4! arrangements of the deck do not
have 2 cards, one from each denomination, side by side. Thus the probability that 2 cards,
one from each denomination, are consecutive in the deck is

1− x · 44! · 4! · 4!

52!
.

To compute x, the number of arrangements of 44 0’s, 4 1’s, and 4 2’s which do not
have a 1 and 2 adjacent, let us start by examing all

(
8

4

)
= 70

arrangements of 4 1’s and 4 2’s. This list of 70 subdivides into 7 groups we will call groups
12, 121, 1212, 12121, 121212, 1212121, and 12121212. In the 12 group we have 2 sequences;
they are

11112222 and 22221111.
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In the 121 group we have 6 sequences; they are

11122221

11222211

12222111

22211112

22111122

21111222.

The 1212 group has 18 sequences

11122212 22211121

11122122 22211211

11121222 22212111

11222112 22111221

11221122 22112211

11211222 22122111

12221112 21112221

12211122 21122211

12111222 21222111.

Continuing in this manner the 12121 group has 18 elements, the 121212 group has 18
elements, the 1212121 group has 6 elements, and the 12121212 group has 2 elements. For
each element in each group we must determine the number of ways we can distribute 44 0’s
so that the sequences of 44 0’s, 4 1’s, and 4 2’s do not have 1 and 2 adjacent.

It turns out that if we determine the number of ways to distribute the 44 0’s (so as to
not have a 1 and 2 adjacent) in one representative from each of the seven groups, the other
group’s members have the same number of ways to distribute the 44 0’s so that 1 and 2 are
not adjacent.

Consider 11112222 from the 12 group. Placing 44 0’s in this sequence so that it does
not have a 1 and 2 adjacent would involve placing 43 0’s in the 9 boxes, ︸︷︷︸, depicted

below. ︸︷︷︸ 1 ︸︷︷︸ 1 ︸︷︷︸ 1 ︸︷︷︸ 1 0︸︷︷︸ 2 ︸︷︷︸ 2 ︸︷︷︸ 2 ︸︷︷︸ 2 ︸︷︷︸
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Note that at least one 0 must go in the middle box. But by [1], the number of ways to put
43 0’s in 9 boxes is (

9− 1 + 43

9− 1

)
=

(
51

8

)
.

By a similar discussion there are (
51

8

)

ways to place 44 0’s in 22221111 so that 1 and 2 are not adjacent. Thus, the number of
sequences we get from the 12 group is

2 ·
(

51

8

)
.

Next take 11122221 from the 121 group. Placing 44 0’s in this sequence so that it does
not have a 1 and 2 adjacent would involve placing 42 0’s in the 9 boxes depicted below.

︸︷︷︸ 1 ︸︷︷︸ 1 ︸︷︷︸ 1 0︸︷︷︸ 2 ︸︷︷︸ 2 ︸︷︷︸ 2 ︸︷︷︸ 2 0︸︷︷︸ 1 ︸︷︷︸
But the number of ways to do this is (

50

8

)

so the number of sequences we get from the 121 group is

6 ·
(

50

8

)
.
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Continuing in this manner we have the following chart.

Group Representative # in Group # per Repres.

12 11112222 2
(
51
8

)
121 11122221 6

(
50
8

)
1212 11122212 18

(
49
8

)
12121 11222121 18

(
48
8

)
121212 11221212 18

(
47
8

)
1212121 12212121 6

(
46
8

)
12121212 12121212 2

(
45
8

)
Thus,

x =2

(
51

8

)
+ 6

(
50

8

)
+ 18

(
49

8

)
+ 18

(
48

8

)

+ 18

(
47

8

)
+ 6

(
46

8

)
+ 2

(
45

8

)
.

Using the computer algebra system DERIVE,

x = 27061623270.

Putting this in

1− x · 44! · 4! · 4!

52!

and again simplifying using DERIVE, the required probability is

284622747

585307450

.
= 0.486279.

References

1. J. L. Mott, A. Kandel, and T. P. Baker, Discrete Mathematics for Computer Scientists,
Reston Publishing Company, Reston, VA, (1983), 140–146.
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52. [1992, 146] Proposed by Dale Woods and Jin Chen, University of Central Oklahoma,
Edmond, Oklahoma.

(a) Find a closed form for the expression

m∑
k=1

k

(
2m

m− k

)
.

(b)∗ Let n ≥ 2 be an integer. Find a closed form for the expression

m∑
k=1

kn
(

2m

m− k

)
.

Solution I to (a) by N. J. Kuenzi, University of Wisconsin-Oshkosh, Oshkosh,
Wisconsin.

Let

am =

m∑
k=1

k

(
2m

m− k

)
.

We will show that

am = m

(
2m− 1

m

)

by showing that am satisfies the recurrence relation

am+1 = 4am +

(
2m

m

)

for m ≥ 1 and that the solution to this recurrence relation with initial condition a1 = 1 is

am = m

(
2m− 1

m

)
.
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To see the second claim first, let am be a sequence satisfying the recurrence relation

am+1 = 4am +

(
2m

m

)

for m ≥ 1 with a1 = 1. Then

a1 = 1 = 1

(
2− 1

1

)
.

Suppose that

an = n

(
2n− 1

n

)
.

Then

an+1 = 4an +

(
2n

n

)
= 4n

(
2n− 1

n

)
+

(
2n

n

)

=
4n(2n− 1)!

n!(n− 1)!
+

(2n)!

n!n!

=
(2n)(2n)!

n!n!
+

(2n)!

n!n!

=
(2n+ 1)!

n!n!
= (n+ 1)

(
2n+ 1

n+ 1

)
.

So by the principle of mathematical induction,

am = m

(
2m− 1

m

)

for all positive integers m. Finally, to show that the sequence

am =

m∑
k=1

k

(
2m

m− k

)
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satisfies the recurrence relation, we will use the following identity

(
n+ 2

j

)
=

(
n

j

)
+ 2

(
n

j − 1

)
+

(
n

j − 2

)
.

Then

am+1 =

m+1∑
k=1

k

(
2m+ 2

m+ 1− k

)

=

m−1∑
k=1

k

[(
2m

m+ 1− k

)
+ 2

(
2m

m− k

)
+

(
2m

m− k − 1

)]
+m(2m+ 2) + (m+ 1)

= 2

m∑
k=1

k

(
2m

m− k

)
+

m−1∑
k=1

k

(
2m

m+ 1− k

)
+

m−1∑
k=1

k

(
2m

m− k − 1

)
+ 2m2 +m+ 1

= 2am +

(
2m

m

)
+

m−1∑
k=2

k

(
2m

m+ 1− k

)
+

m−1∑
k=1

k

(
2m

m− k − 1

)
+ 2m2 +m+ 1

= 2am +

(
2m

m

)
+

m−2∑
j=1

(j + 1)

(
2m

m− j

)
+

m∑
i=2

(i− 1)

(
2m

m− i

)
+ 2m2 +m+ 1

= 2am +

(
2m

m

)
+

m−2∑
j=1

j

(
2m

m− j

)
+

m∑
i=2

i

(
2m

m− i

)
+

(
2m

m− 1

)
+ 2m2 −m

= 2am +

(
2m

m

)
+

m∑
j=1

j

(
2m

m− j

)
+

m∑
i=1

i

(
2m

m− i

)

= 4am +

(
2m

m

)
.
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Solution II to (a) by the proposers.

To prove the (a) part we need the fact that for 1 ≤ k ≤ m,

(1) (m− k)

(
2m

m− k

)
= 2m ·

(
2m− 1

m− 1− k

)
.

This can be shown by using the factorial form of the binomial coefficients. Next, writing
(1) in a slightly different form, we have that

(2) k

(
2m

m− k

)
= m

(
2m

m− k

)
− 2m

(
2m− 1

m− 1− k

)
.

Now summing both sides of (2) as k ranges between 1 and m and using the assumption
that (

2m− 1

−1

)
= 0,

we have that

m∑
k=1

k

(
2m

m− k

)
=

m∑
k=1

(
m

(
2m

m− k

)
− 2m

(
2m− 1

m− 1− k

))

= m

m∑
k=1

(
2m

m− k

)
− 2m

m∑
k=1

(
2m− 1

m− 1− k

)

= m

m−1∑
k=0

(
2m

k

)
− 2m

m−2∑
k=0

(
2m− 1

k

)

= m
22m −

(
2m
m

)
2

− 2m

(
22m−2 −

(
2m− 1

m− 1

))

= m · 22m−1 − m

2

(
2m

m

)
−m · 22m−1 +m · 2

(
2m− 1

m− 1

)

=
m

2

(
2m

m

)
.
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Solution III to (a) by the proposers. We need to use the summation by parts formula

m∑
k=1

bk(ak+1 − ak) +

m∑
k=1

ak(bk − bk−1) = am+1bm − a1b0.

(This identity can be proved by expanding the summation.) Let bk = k and

ak =

k−1∑
j=1

(
2m

m− j

)
.

(Note that a1 = 0.) Then using summation by parts

m∑
k=1

k

(
2m

m− k

)
+

m∑
k=1

k−1∑
j=1

(
2m

m− j

)
= m

m∑
j=1

(
2m

m− j

)
.

Thus

m∑
k=1

k

(
2m

m− k

)
+

m−1∑
k=1

k

(
2m

k

)
= m

m−1∑
k=0

(
2m

k

)
.

But

k

(
2m

k

)
= 2m

(
2m− 1

k − 1

)

so we have

m∑
k=1

k

(
2m

m− k

)
+ 2m

m−1∑
k=1

(
2m− 1

k − 1

)
= m

m−1∑
k=0

(
2m

k

)
.
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Therefore,

m∑
k−1

k

(
2m

m− k

)
= m

m−1∑
k=0

(
2m

k

)
− 2m

m−1∑
k=1

(
2m− 1

k − 1

)

= m

m−1∑
k=0

(
2m

k

)
− 2m

m−2∑
k=0

(
2m− 1

k

)

= m ·
22m −

(
2m
m

)
2

− 2m

(
22m−1

2
−
(

2m− 1

m− 1

))

= m · 22m−1 − m

2

(
2m

m

)
−m · 22m−1 + 2m

(
2m− 1

m− 1

)

= −m
2

(
2m

m

)
+m

(
2m

m

)

=
m

2

(
2m

m

)
.

Part (b) of Problem 52 still remains open.
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