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MINIMAL SURFACES: A DERIVATION OF THE MINIMAL

SURFACE EQUATION FOR AN ARBITRARY

C2 COORDINATE CHART

Sarah Field Griffin

1. Introduction. The study of minimal surfaces is an exciting and active

area of mathematical research. Much of the excitement comes from the desire

to understand the geometry of soap films, which naturally assume the shapes of

minimal surfaces. In this paper, we recall Lagrange’s minimal surface equation and

derive a more general minimal surface equation. We begin with two important

theorems that are well known in the study of minimal surfaces as found in [1].

Theorem 1. (Lagrange, 1760). Let f be a C2, real-valued function on a planar

domain R, and let φ:R → R
3 be defined by φ(x, y) = (x, y, f(x, y)). Suppose

that the graph of f , i.e., the image φ(R), is area-minimizing. Then f satisfies the

following minimal surface equation.

fxx(1 + f2
y )− 2fxfyfxy + fyy(1 + f2

x) = 0.

A partial converse of this theorem was later proved for specific domains and

can be stated as follows.

Theorem 2. (Federer, 1969). Using the notation in Theorem 1, if f satisfies

the graph minimal surface equation on a convex domain R, then its graph φ(R) is

area-minimizing.

Each of these theorems is vital to the study of minimal surfaces. However,

because of the severe restrictions on the types of coordinate charts, an additional

minimal surface equation is necessary for further study. The more general minimal

surface equation that would be satisfied by any arbitrary area-minimizing C2 co-

ordinate chart φ:R → R
3 has over 600 terms. (We verified this using Maple c©.)

Thus, it has never been written down in an easily accessible form. Using the calcu-

lus of variations for vector-valued functions, it is this seemingly abominable general

minimal surface equation that we derive in this paper and express fairly simply.

In addition, we will use this equation to verify that certain surfaces described by

general coordinate charts are minimal.
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2. Using the calculus of variations, we examine an arbitrary C2 coordinate

chart,

φ(x, y) = (φ1(x, y), φ2(x, y), φ3(x, y)), φ:R → R
3,

where R is a bounded, open set in R
2. Let S be the surface in R

3 which is the

image φ(R), and let A(S) be the area of the surface S. Now, suppose we consider

a family φ(s) = φ + sψ of such functions, depending on the parameter s, so that

S(s) is a family of surfaces. Here φ(0) = φ, the coordinate chart in question, and

ψ:R → R
3 is a C2 function such that ψ|∂R = 0. This assumption is equivalent to

assuming that the boundary of S(s) is fixed independent of s.

Note that φx and φy are vectors in R
3 that also depend on x, y, and s, the

variation parameter. Let F (s) = A(S(s)), the area function, and assume 0 is a

critical point for F for all possible ψ. We express the area as

F (s) =

∫

R

G(φx, φy)dxdy,

where G:R3 × R
3 → R is defined by

G(−→u ,−→v ) =

√

det

(−→u · −→u −→u · −→v
−→v · −→u −→v · −→v

)

,

for −→u ,−→v ∈ R
3. Using the chain rule, we find F ′(0), where the prime denotes the

partial derivative with respect to s. Since we assume our variations with respect

to s are smooth, the derivative (G(φx, φy))
′(s) is bounded for every x, y ∈ R and

0 < s < ǫ, ǫ > 0. Therefore, we can differentiate under the integral sign.

F ′(0) =

∫

R

(G(φx, φy))
′(0)dxdy

=

∫

R

∇G(φx, φy) · (φx, φy)′(0)dxdy

=

∫

R

(

∇−→u G(φx, φy) · (φx)′(0) +∇−→v G(φx, φy) · (φy)′(0)
)

dxdy. (1)
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Here, ∇−→u G denotes the gradient of the function G(·,−→v ):R3 → R for constant −→v
and ∇−→v G denotes the gradient of the function G(−→u , ·) for constant −→u . Thus,

∇G = ∇−→u G+∇−→v G.

Recall that, φx(s) = (φ+sψ)x and φy(s) = (φ+sψ)y . Therefore, (φx)
′(0) = ψx

and (φy)
′(0) = ψy. Substituting these into equation (1), we see

F ′(0) =

∫

R

(∇−→u G(φx, φy) · ψx +∇−→v G(φx, φy) · ψy)dxdy.

We integrate by parts in the x variable in the first term and in the y variable

in the second term and factor out the function ψ.

F ′(0) =

∫

R

(

−(∇−→u G(φx, φy))x · ψ − (∇−→v G(φx, φy))y · ψ
)

dxdy. (2)

Since ψ = 0 on ∂R, the boundary terms in the integration by parts equal zero.

Factoring equation (2), we have

F ′(0) = −
∫

R

[

(∇−→u G(φx, φy))x + (∇−→v G(φx, φy))y

]

· ψ dxdy.

Recall that since F (s) is the area function and we assumed 0 was a critical point

of F for all possible ψ, F ′(0) must equal 0 for all possible ψ. In particular, if we

choose

ψ = (∇−→u G(φx, φy))x + (∇−→v G(φx, φy))y,

then

∥

∥

∥

∥

[

(∇−→u G(φx, φy))x + (∇−→v G(φx, φy))y

]∥

∥

∥

∥

2

= 0.

This implies that

(∇−→u G(φx, φy))x + (∇−→v G(φx, φy))y = 0. (3)
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Now, we substitute for G. Let −→u ,−→v ∈ R
3 be given, and let θ be the angle

between −→u and −→v . Note that 0 ≤ θ ≤ π.

(G(−→u ,−→v ))2 = det

(−→u · −→u −→u · −→v
−→v · −→u −→v · −→v

)

= (−→u · −→u )(−→v · −→v )− (−→u · −→v )(−→v · −→u )

= ‖−→u ‖2‖−→v ‖2 − ‖−→u ‖2‖−→v ‖2 cos2 θ
= ‖−→u ‖2‖−→v ‖2(sin2 θ)
= ‖−→u ×−→v ‖2.

Therefore,

G(−→u ,−→v ) = ‖−→u ×−→v ‖
= (〈−→u ×−→v ,−→u ×−→v 〉)1/2.

We calculate the first term of equation (3). For every −→u ,−→v ∈ R
3,

∇−→u G(
−→u ,−→v ) = ∇−→u (〈−→u ×−→v ,−→u ×−→v 〉)1/2

=

(

∂

∂u1
(〈−→u ×−→v ,−→u ×−→v 〉)1/2,

∂

∂u2
(〈−→u ×−→v ,−→u ×−→v 〉)1/2, ∂

∂u3
(〈−→u ×−→v ,−→u ×−→v 〉)1/2

)

=

(

(〈−→u × −→v ,−→u ×−→v 〉)−1/2(2(u3v1 − u1v3)(−v3) + 2(u1v2 − u2v1)(v2)),

(〈−→u ×−→v ,−→u ×−→v 〉)−1/2(2(u2v3 − u3v2)(v3) + 2(u1v2 − u2v1)(−v1)),

(〈−→u ×−→v ,−→u ×−→v 〉)−1/2(2(u2v3 − u3v2)(−v2) + 2(u3v1 − u1v3)(v1))

)
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= (〈−→u ×−→v ,−→u ×−→v 〉)−1/2

(

[−(−→u ×−→v )2v3 + (−→u ×−→v )3v2],

[(−→u ×−→v )1v3 − (−→u ×−→v )3v1], [−(−→u ×−→v )1v2 + (−→u ×−→v )2v1]

)

= (〈−→u ×−→v ,−→u ×−→v 〉)−1/2(−→v × (−→u ×−→v )).

Thus,

∇−→u G(φx, φy) = (〈φx × φy, φx × φy〉)−1/2(φy × (φx × φy)). (4)

By symmetry, we find the second term of equation (3).

∇−→v G(
−→u ,−→v ) = ∇−→v (〈−→u ×−→v ,−→u ×−→v 〉)1/2

= (〈−→u ×−→v ,−→u ×−→v 〉)−1/2(−→u × (−→v ×−→u )).

Thus,

∇−→v G(φx, φy) = (〈φx × φy, φx × φy〉)−1/2(φx × (φy × φx)). (5)

Substituting equations (4) and (5) into equation (3), we have the following theorem.

Theorem 3. Let R be a bounded, open set in R
2, and let φ:R → R

3 be a

one-to-one, C2, vector-valued function such that φ(R) is area-minimizing. Then, φ

satisfies the general minimal surface equation.

(

φy × (φx × φy)

‖φx × φy‖

)

x

+

(

φx × (φy × φx)

‖φx × φy‖

)

y

= 0.

3. In this section, we look at some familiar results that appear as consequences

of Theorem 3.

Example 1. Lagrange’s Minimal Surface Equation. We begin with the chart

φ(x, y) = (x, y, f(x, y)), where f is a C2, real-valued function on a planar domain
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R. Then φx = (1, 0, fx) and φy = (0, 1, fy). Using Maple c© to calculate the cross

products and derivatives in Theorem 3, we obtain

(−fx(−2fxfyfxy + fxx(1 + f2
y ) + fyy(1 + f2

x))

(1 + f2
x + f2

y )
3/2

,

−fy(−2fxfyfxy + fxx(1 + f2
y ) + fyy(1 + f2

x))

(1 + f2
x + f2

y )
3/2

,

−2fxfyfxy + fxx(1 + f2
y ) + fyy(1 + f2

x)

(1 + f2
x + f2

y )
3/2

)

= 0.

Simplifying,

(fxx(1 + f2
y )− 2fxfyfxy + fyy(1 + f2

x))
(−fx,−fy, 1)

(1 + f2
x + f2

y )
3/2

= 0. (6)

Since the vector (−fx,−fy, 1) in equation (6) is non-zero, the scalar to the left

must equal 0, which gives us Lagrange’s graph minimal surface equation.

The vector (−fx,−fy, 1) we obtain is interesting itself. Let z = f(x, y) and

define a function h as follows.

h(x, y, z) = z − f(x, y).

Level sets for the function h are of the form h(x, y, z) = c for some c ∈ R and

the level set for c = 0 is our minimal surface. The gradient ∇h(x0, y0, z0) is

perpendicular to the level set h(x, y, z) = 0 provided ∇h(x0, y0, z0) 6= 0. In our

case, ∇h = (−fx,−fy, 1), which is the vector we see in equation (6). Now, the

vector (−fx,−fy, 1) is normal to our surface at (x, y, f(x, y)). Thus, if we let−→
N = (−fx,−fy, 1), we can rewrite equation (6) as

(fxx(1 + f2
y )− 2fxfyfxy + fyy(1 + f2

x))

−→
N

‖−→N ‖3/2
= 0.
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Example 2. Conformal Coordinates. A conformal map φ:R → R
3 is a map

such that φx · φx = φy · φy and φx · φy = 0. If φ is conformal and φ(R) is minimal,

then φ satisfies Laplace’s equation φxx+φyy = 0 (see, for example, [4]). This means

that every coordinate function satisfies Laplace’s equation. Here, we show that if

we assume φ is a conformal map and substitute φ into Theorem 3, the result will

be Laplace’s equation. For notational simplification, let −→u = φx and −→v = φy. Let

us begin with the first term of Theorem 3. Let ŵ be the unit vector in the −→u ×−→v
direction. Then −→u × −→v = ‖−→u ‖ ‖−→v ‖ŵ, since −→u and −→v are perpendicular. Now,
−→v × (‖−→u ‖ ‖−→v ‖ŵ) is in the direction of −→u , and its magnitude is ‖−→v ‖ ‖−→u ‖ ‖−→v ‖,
again because the vectors −→v and ŵ are perpendicular. Therefore, the entire vector

can be expressed as

−→v × (−→u ×−→v ) = ‖−→v ‖2‖−→u ‖
−→u
‖−→u ‖ ,

where −→u /‖−→u ‖ is the unit vector in the −→u direction, so −→v × (−→u ×−→v ) = ‖−→v ‖2−→u .

Substituting into the fraction in the first term of Theorem 3,

(−→v × (−→u ×−→v )

‖−→u ×−→v ‖

)

x

=

( ‖−→v ‖2−→u
‖−→u ×−→v ‖

)

x

=

( ‖−→v ‖2−→u
‖−→u ‖ ‖−→v ‖

)

x

=

(‖−→v ‖
‖−→u ‖

−→u
)

x

.

By the conformal hypothesis, ‖−→u ‖ = ‖−→v ‖ and thus,

(−→v × (−→u ×−→v )

‖−→u ×−→v ‖

)

x

= (−→u )x.
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By similar calculations, we see that the second term of Theorem 3 becomes

(−→u × (−→v ×−→u )

‖−→u ×−→v ‖

)

y

= (−→v )y.

Thus, the entire expression in Theorem 3 becomes (−→u )x+(−→v )y = 0, which by our

substitutions of −→u = φx and −→v = φy becomes Laplace’s equation, φxx + φyy = 0.

Example 3. The Catenoid. Consider a parameterization of the catenoid as in

[3].

φ(u, v) = (r(u) cos v, r(u) sin v, u), r(u) = coshu.

Note that this gives a catenoid whose axis of revolution is the z axis. Then,

φu = (sinh(u) cos v, sinh(u) sin v, 1),

φv = (− cosh(u) sin v, cosh(u) cos v, 0),

φu × φv = (− cosh(u) cos v,− cosh(u) sin v, sinh(u) cosh(u)), and

‖φu × φv‖ = cosh2(u).

It is easily shown that this φ satisfies Theorem 3.

Example 4. Generalized Catenoid. Consider the twisted catenoid, as given by

the parameterization in [2].

φ1(u, v) = u cos v

φ2(u, v) = m(u) + u sin v

φ3(u, v) =

∫ u

1

dw

△(w)
,

where

m(u) =

∫ u

1

w2dw

△(w)
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and

△(w) =
√

w4 − 1.

Thus, we have the following equations.

φu =

(

cos v,
u2 + sin v

√
u4 − 1√

u4 − 1
,

1√
u4 − 1

)

φv = (−u sin v, u cos v, 0)

φu × φv =
1√

u4 − 1

(

−u cos v,−u sin v, u(u
2 sin v +

√
u4 − 1)√

u4 − 1

)

‖φu × φv‖ =
u

u4 − 1

(

2u4 − 2 + u4 sin2 v + 2u2(sin v)
√

u4 − 1
)1/2

.

After lengthy computations, we see that this φ satisfies Theorem 3; therefore, the

image of φ is a minimal surface. Although the computation is lengthy, the use of

Theorem 3 is noteworthy because the verification by Riemann was not done by

explicit computation. Note that it is not possible to use Lagrange’s equation to

verify that the parameterization given by φ is a minimal surface.
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