SOLUTIONS

No problem is ever permanently closed. Any comments, new solutions, or new insights on old problems are always welcomed by the problem editor.
26. [1990, 140; 1991, 152] Proposed by Stanley Rabinowitz, Westford, Massachusetts.

Prove that

$$
\sum_{k=1}^{38} \sin \frac{k^{8} \pi}{38}=\sqrt{19}
$$

Solution by Les Reid, Southwest Missouri State University, Springfield, Missouri. We will show more generally that if p is a prime number, $p \equiv 3 \bmod 4$, and $m \geq 1$, then

$$
\sum_{k=1}^{2 p} \sin \frac{k^{2^{m}} \pi}{2 p}=\sum_{k=1}^{2 p} \cos \frac{k^{2^{m}} \pi}{2 p}=\sqrt{p}
$$

Let $\omega=\cos \pi /(2 p)+i \sin \pi /(2 p)$ and consider $\sum_{k=1}^{4 p} \omega^{k^{2^{m}}}$. Since ω is a primitive $4 p^{t h}$ root of unity, it suffices to compute the exponents modulo $4 p$.

We claim that $\sum_{k=1}^{4 p} \omega^{k^{2^{m}}}$ is independent of m for $m \geq 1$. To show this it suffices to show that $\left\{k^{2} \mid k \in \mathbb{Z}_{4 p}\right\}=\left\{k^{4} \mid k \in \mathbb{Z}_{4 p}\right\}$ and the claim will follow by induction. Since $\left\{k^{4} \mid k \in \mathbb{Z}_{4 p}\right\} \subseteq\left\{k^{2} \mid k \in \mathbb{Z}_{4 p}\right\}$, we will be done if we can construct a bijection from the superset to the subset. We claim that the map $f(x)=x^{2}$ does the trick. Now $\mathbb{Z}_{4 p} \cong \mathbb{Z}_{4} \times \mathbb{Z}_{p}$, by the Chinese Remainder Theorem. There are four types of squares in $\mathbb{Z}_{4} \times \mathbb{Z}_{p}$: $(0,0),(1,0),\left(0, u^{2}\right)$, and $\left(1, u^{2}\right)$ where $u \neq 0 \in \mathbb{Z}_{p}$. Squaring clearly leaves the first two types invariant. For the second two types, the first coordinate is unchanged by squaring. The second coordinate is from the multiplicative abelian group $\left(\mathbb{Z}_{p}^{\times}\right)^{2}$ which has order $(p-1) / 2$ (since p is an (odd) prime). This is odd since $p \equiv 3 \bmod 4$. Therefore squaring yields a group isomorphism (on the second coordinate), and hence f is a bijection.

A classic result of Gauss [for example, see Lang's Algebraic Number Theory, pp.8587] states that if $\alpha=\cos 2 \pi / b+i \sin 2 \pi / b$ for $b>0$, then

$$
\sum_{k=1}^{b} \alpha^{k^{2}}= \begin{cases}(1+i) \sqrt{b} & \text { if } b \equiv 0 \bmod 4 \\ \sqrt{b} & \text { if } b \equiv 1 \bmod 4 \\ 0 & \text { if } b \equiv 2 \bmod 4 \\ i \sqrt{b} & \text { if } b \equiv 3 \bmod 4\end{cases}
$$

In our case, $b=4 p$, so $\sum_{k=1}^{4 p} \omega^{k^{2}}=(1+i) \sqrt{4 p}$. Finally $\sum_{k=1}^{4 p} \omega^{k^{2^{m}}}=2 \sum_{k=1}^{2 p} \omega^{k^{2^{m}}}$, so

$$
\begin{aligned}
& \sum_{k=1}^{2 p}\left(\cos \frac{k^{2^{m}} \pi}{2 p}+i \sin \frac{k^{2^{m}} \pi}{2 p}\right)=\sum_{k=1}^{2 p} \omega^{k^{2^{m}}}=\frac{1}{2} \sum_{k=1}^{4 p} \omega^{k^{2^{m}}} \\
& =\frac{1}{2} \sum_{k=1}^{4 p} \omega^{k^{2}}=\frac{1}{2}(1+i) \sqrt{4 p}=(1+i) \sqrt{p}
\end{aligned}
$$

Comparing real and imaginary parts, the result follows.

