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SOLUTIONS

No problem is ever permanently closed. Any comments, new solutions, or new
insights on old problems are always welcomed by the problem editor.

26. [1990, 140; 1991, 152] Proposed by Stanley Rabinowitz, Westford, Mass-

achusetts.

Prove that
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Solution by Les Reid, Southwest Missouri State University, Springfield,

Missouri. We will show more generally that if p is a prime number, p ≡ 3 mod 4,
and m ≥ 1, then
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Let ω = cosπ/(2p) + i sinπ/(2p) and consider
∑4p

k=1 ω
k2

m

. Since ω is a primitive
4pth root of unity, it suffices to compute the exponents modulo 4p.

We claim that
∑4p

k=1 ω
k2

m

is independent of m for m ≥ 1. To show this it suffices
to show that {k2|k ∈ Z4p} = {k4|k ∈ Z4p} and the claim will follow by induction.
Since {k4|k ∈ Z4p} ⊆ {k2|k ∈ Z4p}, we will be done if we can construct a bijection
from the superset to the subset. We claim that the map f(x) = x2 does the trick.
Now Z4p

∼= Z4 × Zp, by the Chinese Remainder Theorem. There are four types of
squares in Z4 × Zp: (0, 0), (1, 0), (0, u2), and (1, u2) where u 6= 0 ∈ Zp. Squaring
clearly leaves the first two types invariant. For the second two types, the first coor-
dinate is unchanged by squaring. The second coordinate is from the multiplicative
abelian group (Z×

p )
2 which has order (p − 1)/2 (since p is an (odd) prime). This

is odd since p ≡ 3 mod 4. Therefore squaring yields a group isomorphism (on the
second coordinate), and hence f is a bijection.
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A classic result of Gauss [for example, see Lang’s Algebraic Number Theory, pp.85-
87] states that if α = cos 2π/b+ i sin 2π/b for b > 0, then
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0 if b ≡ 2 mod 4
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√
b if b ≡ 3 mod 4

In our case, b = 4p, so
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√
4p. Finally
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,
so
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Comparing real and imaginary parts, the result follows.


