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INDEX OF A SUBGROUP OF AN ABELIAN GROUP

Kandasamy Muthuvel

Introduction. Lemma 1 of [2] states that if an abelian group G is a union of
cosets H1 + a1, H2 + a2, . . . , Hn + an, where the Hi’s are subgroups of G and the
ai’s are elements of G, then the index of one of these subgroups is finite. In that
paper nothing was said about an upper bound for the index of that subgroup. In
this paper, under the hypothesis of Lemma 1 of [2], we show that, for n ≥ 3, the
index of one of those subgroups is at most 22(n−2)−2n−2+1. The above conclusion
is not true for nonabelian groups. It is easy to see that if

G =

2⋃

i=1

(Hi + ai)

and the Hi’s are proper subgroups of G, then H1 = H2. Further, we show that if

G =

3⋃

i=1

(Hi + ai)

and the Hi’s are proper subgroups of G, then either the index of one of these
subgroups is two or all these subgroups are identical, and hence the index of one of
these subgroups is at most three.

Notation. If A and B are subsets of an abelian group (G,+), then A+B and
A − B stand for {x + y : x ∈ A and y ∈ B} and {x − y : x ∈ A and y ∈ B},
respectively. For g ∈ G, A + {g} is denoted by A + g. The set A \ B denotes
{x ∈ A : x /∈ B}.

Lemma 1. Let a and b be elements of an abelian group (G,+). Suppose that H
and K are proper subgroups of G such that H is not contained in K, and K is not
contained in H . Then there exists a subset M of G of cardinality four such that,
for every g ∈ G, the intersection of the set M+g and the set G\ ((H+a)∪ (K+b))
is nonempty.

Proof. Let h ∈ H \K, k ∈ K \H , and M = {0, h, k, h + k}. Suppose, to
the contrary, that M + g ⊆ (H + a) ∪ (K + b) for some g ∈ G. Without loss of
generality, we may assume that g ∈ H + a. If k+ g ∈ H + a, then k = (k+ g)− g ∈



188 MISSOURI JOURNAL OF MATHEMATICAL SCIENCES

(H + a)− (H + a) = H , which contradicts that k ∈ K \H . Hence, k + g ∈ K + b.
If h + k + g ∈ K + b, then h = (h + k + g) − (k + g) ∈ (K + b) − (K + b) = K,
which contradicts that h ∈ H \K. Hence, h + k + g ∈ H + a. Now k = (h + k +
g) − (h + g) ∈ (H + a) − (H + a) = H , which is a contradiction. Thus, for every
g ∈ G, (M + g) ∩ (G \ ((H + a) ∪ (K + b)) is nonempty.

Lemma 2. If H and K are proper subgroups of an abelian group (G,+) and
G = (H + a) ∪ (K + b) for some elements a and b of G, then H = K.

Proof. By Lemma 1, H ⊆ K or K ⊆ H . Without loss of generality, we may
assume that H ⊆ K. Suppose that H is properly contained in K. Let k ∈ K \H .
Then k + a /∈ H + a. Hence, k + a ∈ K + b. Since the cosets of a subgroup are
either identical or disjoint, K + a = K + b. Consequently, G = (H + a) ∪ (K + a)
and G = G− a = H ∪K, which contradicts the fact that no group is the union of
two of its proper subgroups.

Lemma 3. If H , K, and S are proper subgroups of an abelian group (G,+)
and G = H ∪K ∪ S, then

(i) the intersection of any two of the subgroups H , K, S is the same as the
intersection of all the subgroups H , K, S;

(ii) the index of each of the subgroups H , K, S is two.

Proof of (i). If S is contained in H∪K, then G = H∪K, which contradicts the
fact that no group is the union of two of its proper subgroups. Let s ∈ S \ (H ∪K)
and x ∈ H∩K. Then x+s /∈ H∪K. Hence, x+s ∈ S and x ∈ S−s = S. This shows
thatH∩K ⊆ S and hence, H∩K = H∩K∩S. Similarly, H∩S = K∩S = H∩K∩S.

Proof of (ii). Since no group is the union of two of its proper subgroups, H \S
andK\S are nonempty. Let h ∈ H\S and k ∈ K\S. Then, sinceH∩K = H∩K∩S,
we have h /∈ K and k /∈ H . It is easy to see that h+ k /∈ H ∪K.

Hence,
h+ k ∈ S for all h ∈ H \ S and k ∈ K \ S. (∗)

This implies that ∅ 6= H \ S ⊆ S − k for all k ∈ K \ S and ∅ 6= K \ S ⊆ S − h
for all h ∈ H \S. Let k be a fixed element of K \S. Note that k ∈ K \S if and only
if −k ∈ K \S. Now, it follows from (∗) that h− k ∈ S for all h ∈ H \S, and hence,
S − h = S − k for all h ∈ H \ S. Consequently, H \ S ⊆ S − k and K \ S ⊆ S − k.
Now since G = H ∪K ∪ S = (H \ S)∪ (K \ S)∪ S = (S − k)∪ S, the index of S is
two. Similarly, the index of each of the subgroups H , K is two.

Remark 1. There exists an abelian group G, and three distinct proper sub-
groups H , K, S of G such that no two elements of {H,K, S} are linearly ordered
under set inclusion (i.e., X 6⊂ Y and Y 6⊂ X for X,Y ∈ {H,K, S} and X 6= Y ) and
G = H ∪K ∪ S.
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For example, let G = U(8) = {1, 3, 5, 7}, H = {1, 3}, K = {1, 5}, and S =
{1, 7}.

However, it follows from the proof of the following theorem that in the above
statement if G = H ∪K ∪S is replaced by G = H ∪K ∪ (S+ c) for some c ∈ G \S,
then we have S ⊆ H or S ⊆ K.

Theorem 1. Let H , K, and S be proper subgroups of an abelian group (G,+)
and G = H ∪K ∪ (S + c) for some c ∈ G. Then

(i) the index of two of the subgroups H , K, S is two if c /∈ S;
(ii) the index of each of the subgroups H , K, S is two if c ∈ S.

Proof of (i). Since the set (S+c)∩S is empty, S is contained in the set H ∪K.
Hence, S = (S ∩ H) ∪ (S ∩ K). Since no group is the union of two of its proper
subgroups, S ∩ H = S or S ∩K = S. Without loss of generality we may assume
that S ∩H = S. This is equivalent to S ⊆ H .

Case 1. H ⊆ K.

In this caseG = K∪(S+c). Now, by Lemma 2, K = S. Since S ⊆ H ⊆ K = S,
H = K = S and the index of each of these subgroups is two.

Case 2. K ⊆ H .

In this case G = H ∪ (S + c). Now, by Lemma 2, H = S and the index of H
is two.

Case 3. H is not contained in K, and K is not contained in H .

Let h ∈ H\K and k ∈ K\H . Then h+k /∈ H∪K and hence, h+k ∈ S+c. Let
h be a fixed element ofH\K. ThenK\H ⊆ S+c−h and G = H∪(K\H)∪(S+c) =
H∪(S+c−h)∪(S+c). Since S ⊆ H and H+c−h = H+c, we get G = H∪(H+c)
and the index of H is two. Furthermore, in this case, we shall show that the index
of one of the subgroups K, S is two. If S is contained in K, then, as done above
for S ⊆ H , we have G = K ∪ (K + c), and hence, the index of K is two.

If S is not contained in K, then we shall show that S = H and the index of
S is two. To verify this, let s ∈ S \ K and x ∈ K. Then x + s /∈ K and hence,
x+ s ∈ H ∪ (S + c). Since s ∈ S ⊆ H , we get x = (x+ s)− s ∈ (H ∪ (S+ c))− s =
(H − s) ∪ (S + c − s) = H ∪ (S + c) and hence, K ⊆ H ∪ (S + c). Now, since
G = H ∪ (S + c), by Lemma 2, H = S and the index of S is two. This completes
the proof of Case 3.

Thus, in all three cases, the index of two of the subgroups H , K, S is two.

Part (ii) of Theorem 1 is a restatement of Lemma 3(ii).

Corollary 1. Suppose H , K, and S are proper subgroups of an abelian group
(G,+) such that H is not contained in K, K is not contained in H , and G =
H ∪K ∪ (S + c) for some c ∈ G \ S. Then

(i) if S is not contained in H ∩K, S = H or S = K, and the index of S is two.
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(ii) if S is contained in H ∩K, H and K have the same index two and the index
of S is at most four.

Proof of (i). We proved in Theorem 1 that S ⊆ H or S ⊆ K, and if S is
not contained in K, then S = H and the index of S is two; similarly, if S is not
contained in H , then S = K and the index of S is two.

Proof of (ii). If H ⊆ K or K ⊆ H , then it follows from the proofs of Case
1 and Case 2 that H = K = S and the index of each of the subgroups is two.
Suppose H is not contained in K, and K is not contained in H . By Case 3 of
the previous theorem, if S ⊆ H , then the index of H is two. Similarly, if S ⊆ K,
then the index of K is two. By Lemma 1, there exists a set M of cardinality four
such that (M + g) ∩ (G \ (H ∪ K) is nonempty for every g in G. Hence, since
G \ (H ∪K) ⊆ S + c, we have (M + g)∩ (S + c) 6= ∅ for all g ∈ G. This shows that
G = S + c−M and the index of S is at most four.

Remark 2. In Corollary 1, if c ∈ S instead of c ∈ G\S, then S is not contained
in H ∩K; otherwise G = H ∪K, which is impossible. Further, it is not true that
S = H or S = K. For example, let G = U(8) = {1, 3, 5, 7}, H = {1, 3}, K = {1, 5},
and S = {1, 7}.

From Corollary 1 and the proof of Theorem 1, we obtain the following corollary.

Corollary 2. In Theorem 1(i), if G is not equal to the proper subunion (i.e.,
H ∪ (S + c) 6= G 6= K ∪ (S + c)), then S ⊆ H ∩K, H and K have the same index
two, and the index of S is at most four.

The following example shows that in Corollary 2, the upper bound four for the
index of S cannot be improved.

Example 1. Let G = Z4 ⊕ Z2 ⊕ Z2, H = Z4 ⊕ {0} ⊕ Z2, K = Z4 ⊕ Z2 ⊕ {0},
S = Z4 ⊕ {0} ⊕ {0} and c = (0, 1, 1). Then G = H ∪K ∪ (S + c), H and K have
the same index two, and the index of S is four.

Theorem 2. If H , K, and S are proper subgroups of an abelian group (G,+)
and G = H ∪ (K + b) ∪ (S + c) for some elements b and c of G, then either the
index of one of the subgroups H , K, S is two or H = K = S.

Proof. It is sufficient to show that if the index of each of the subgroups H , K,
S is not equal to two, then H = K = S. Suppose that the index of each of the
subgroups H , K, S is not equal to two.

Claim 1. b /∈ H +K and c /∈ H + S.

Proof. If b ∈ H + K, then b = h + k for some h ∈ H and k ∈ K. Since
H − h = H , K − k = K, and G = H ∪ (K + b) ∪ (S + c), we have G = G − h =
(H−h)∪ (K+ b−h)∪ (S+ c−h) = H ∪K ∪ (S+ c−h). Theorem 1 yields that the
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index of two of the subgroups H , K, S is two, which contradicts our assumption.
Hence, b /∈ H +K. Similarly, c /∈ H + S.

Claim 2. K = S.

Proof. If (K + b) \ (S + c) is empty, then, since G = H ∪ (K + b) ∪ (S + c),
we have G = H ∪ (S + c). Consequently, by Lemma 2, the index of two of the
subgroups H , K, S is two. Suppose that (K + b) \ (S + c) is nonempty. Let
x ∈ (K + b) \ (S + c). We shall prove that S is contained in K. The proof of K is
contained in S is similar. Suppose S \K 6= ∅. Let s ∈ S \K. Then it is easy to see
that x+s /∈ S+c. x+s /∈ K+b; otherwise s = (x+s)−x ∈ (K+b)−(K+b) = K,
which contradicts that s ∈ S \ K. Consequently, x + s ∈ H . This shows that
x ∈ H − s and (K + b) \ (S + c) ⊆ H − s, and hence,

G = H ∪ (H − s) ∪ (S + c). (•)

Let h ∈ H . By Claim 1, c /∈ H + S. Hence, h+ c /∈ H and h+ c /∈ H − s. By (•),
h + c ∈ S + c and hence, h ∈ S. This implies that H ⊆ S. Consequently, by (•)
and the fact that S− s = S, we have G = S ∪ (S− s)∪ (S+ c) = S ∪ (S+ c), which
contradicts our assumption that the index of S is not equal to two. Thus S ⊆ K.
Similarly, K ⊆ S.

Claim 3. H = K.

Proof. By Claim 1, we have b /∈ H + K, c /∈ H + S, and, by Claim 2,
K = S. Since the cosets of a subgroup are either identical or disjoint, we have
K ∩ (K + b) = ∅ = K ∩ (K + c). Note that G = H ∪ (K + b) ∪ (K + c). Hence,
K ⊆ H .

To show that H = K, suppose that K is properly contained in H . Let h ∈
H \ K. Then h + b /∈ K + b. Since b /∈ H , h + b /∈ H . Consequently, h + b ∈
K + c. This implies that b − c ∈ K − h ⊆ H . Hence, H + b = H + c. Now
G = H ∪ (K + b)∪ (K + c) = H ∪ (H + b)∪ (H + c) = H ∪ (H + b) and hence, the
index of H is two, which contradicts our assumption. This completes the proof of
Claim 3. Thus, H = K = S.

Corollary 3. In Theorem 2, if the index of H is two and K ∪S is not contained
in H , then the index of K or S is two.

Proof. If K∪S is not contained in H , then K is not contained in H or S is not
contained in H . Without loss of generality, we may assume that K is not contained
in H . If H ⊆ K, then |G : K| < |G : H | = 2, which contradicts that K is a proper
subgroup of G. So, H is not contained in K. Since the index of H is two and H is
properly contained in the subgroup H +K, we get H +K = G. Since b ∈ H +K,
the proof of Claim 1 of Theorem 2 shows that G = H ∪K ∪ (S + c− h). Now, the
desired result follows from Theorem 1.
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Corollary 4. If H , K, and S are proper subgroups of an abelian group (G,+)
and G = (H + a)∪ (K + b)∪ (S+ c) for some elements a, b, c of G, then either one
of the subgroups H , K, S has index two or H = K = S.

Proof. Since 0 ∈ G, we have H + a = H , K + b = K, or S + c = S. Now, the
corollary follows from Theorem 2.

Remark 3. It is interesting to note that Theorem 2 is not true for nonabelian
groups. Let G be the symmetric group S3, H = {(1), (1, 2)}, K = {(1), (1, 3)},
S = {(1), (2, 3)}, b = (1, 3, 2) and c = (1, 3). Then H , K, and S are distinct
subgroups of G, and G = H ∪ (K + b) ∪ (S + c) for some b, c ∈ G, but the index of
each of the subgroups H , K, S is three.

The following theorem is a generalization of a result in [1,2]. Lemma 1 of [2]
states that if an abelian group (G,+) is the set theoretic union of finitely many
cosets,

G =
n⋃

i=1

(Hi + ai),

where ai ∈ G, and the Hi’s are subgroups of G, then the index of Hi is finite for
some i.

Theorem 3. If the Hi’s are proper subgroups of an abelian (G,+) and G is the
set-theoretic union of finitely many cosets,

G =

n⋃

i=1

(Hi + ai),

where ai ∈ G and n ≥ 4, then the index of Hi is at most 22(n−2) − 2(n−2)+1 for at
least two values of i.

We prove first the following two lemmas.

Lemma 4. Let M be a subset of an abelian group (G,+) of cardinality 2n−1,
where n ≥ 4, and let a ∈ G. Suppose that the index of a subgroup H of G is greater
than 22(n−2)−2(n−2)+1. Then there exists a g ∈ G such that M +g ⊆ G\ (H+a).

Proof. If, for every g ∈ G, M + g is not contained in G \ (H + a), then
(M + g)∩ (H + a) is nonempty for every g ∈ G, and hence, G = H + a−M , which
implies that the index of H is at most |a−M | = 2n−1. But this together with the
fact that 2n−1 < 22(n−2) − 2n−2 + 1 for all n ≥ 4 contradicts the hypothesis that
the index of H is greater than 22(n−2) − 2(n−2) + 1.
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Lemma 5. Suppose that the index of a subgroup H of an abelian group (G,+)
is greater than 22(n−2) − 2(n−2) + 1, where n ≥ 4. Let S be a subset of G that
has the following property: for every subset X of G of cardinality 2m, where m is
a positive integer and m ≤ n − 1, there exists a g ∈ G such that X + g ⊆ S. Let
a ∈ G. Then S \ (H + a) has the following property: for every subset Y of G of
cardinality 2m−1, there exists g ∈ G such that Y + g ⊆ S \ (H + a).

Proof. Let Y be a subset of G of cardinality 2m−1, 1 ≤ m ≤ n − 1, and
g ∈ G. Then, since the cardinality of the set Y ∪ (Y + g) is at most 2m, (Y ∪
(Y + g)) + r ⊆ S for some r ∈ G. Suppose that the conclusion of the lemma is
false. Then (Y + r) ∩ (H + a) 6= ∅ and (Y + (g + r)) ∩ (H + a) 6= ∅. Consequently,
g = (g+ r)− r ∈ (H + a−Y )− (H+ a−Y ) = H −H+Y −Y = H +Y −Y . Since
g ∈ H +(Y − Y ) for all g ∈ G, |Y − Y | ≤ |Y |2 − |Y |+1 = 22(m−1) − 2m−1 +1, and
m ≤ n−1, the index of H is at most 22(m−1)−2m−1+1 ≤ 22(n−2)−2n−2+1, which
contradicts the hypothesis that the index of H is greater than 22(n−2)− 2(n−2) +1.

Proof of Theorem 3. Assume that the conclusion of the theorem is false. Then,
for at least n− 1 values of i, the index of Hi is greater than 22(n−2) − 2(n−2) + 1.
Without loss of generality, we may assume that the index of Hi is greater than
22(n−2) − 2(n−2) + 1 for each i, 1 ≤ i ≤ n− 1. Then, by Lemma 4, G \ (H1 + a1)
contains a translated copy of every set of cardinality 2n−1. Applying Lemma 5 to
the set G \ (H1 + a1), we get

(G \ (H1 + a1)) \ (H2 + a2) = G \
2⋃

i=1

(Hi + ai)

contains a translated copy of every set of cardinality 2n−2. Continuing in this
fashion, we obtain that

G \
n−1⋃

i=1

(Hi + ai)

contains a translated copy of every set of cardinality 2n−(n−1) = 2. Since

G \
n−1⋃

i=1

(Hi + ai) ⊆ (Hn + an)
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and

G \
n−1⋃

i=1

(Hi + ai)

contains a translated copy of every set of cardinality 2, so does the set Hn + an.
Let g ∈ G \ Hn. Then {0, g} + x ⊆ Hn + an for some x ∈ G, which implies that
g = (g+x)−x ∈ Hn + an − (Hn + an) = Hn. This contradicts that Hn is a proper
subgroup of G. Thus the proof of the theorem is complete.

Remark 4. Clearly, Theorem 3 is not true for n = 2. To see that Theorem 3 is
not true for n = 3, let G = Z4 ⊕ Z4, H1 = Z4 ⊕ {0}, H2 = H1, H3 = Z4 ⊕ {0, 2},
a1 = (0, 1), a2 = (0, 3) and a3 = (0, 0).
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