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A CHARACTERIZATION OF METACOMPACTNESS

IN TERMS OF FILTERS

James E. Joseph, Myung H. Kwack, and Bhamini M. P. Nayar

Elementary general topology courses customarily include characterizations of

compact topological spaces, Lindelöf spaces and countably compact spaces in terms

of filters and filterbases. The purpose of this note is to add to the literature a charac-

terization of metacompactness in terms of filters. The reader is referred to Bourbaki

[2] for definitions and results used but not given here. All spaces in this note are

topological spaces. However, no separation axioms are assumed unless explicitly

stated. A collection of subsets of a set is point-finite if each point in the set is a

member of at most finitely many members of the collection. In this article we will

say that a family of sets Ω refines a family of sets Γ if each A ∈ Ω satisfies A ⊂ B

for some B ∈ Γ and ∪ΩA = ∪ΓA. A topological space is defined to be metacompact

if every covering by open sets has a point-finite open refinement (see [1]). It is

proved in [1] that a T1 countably compact metacompact space is compact. Here we

1) characterize metacompactness by filters, 2) use the characterization to give two

proofs that a countably compact metacompact space is compact, 3) give a relation-

ship between continuity of functions and filters characterizating metacompactness

and some new proofs of known results to illustrate how this relationship may be

used to shorten proofs of results involving continuity and metacompactness.

Definition 1. A collection of subsets Ω of a set X is point dominating (p.d.) if

each x ∈ X is a member of all but finitely many elements of Ω.

Definition 2. A filter on a space is of type M if every p.d. subcollection of the

filter has nonempty adherence.

We give the following lemma without proof.

Lemma 1. A filter on a space is of type M if and only if every closed p.d.

subcollection of the filter has nonempty adherence.

The following theorem gives the promised characterization of metacompactness

by filters.

Theorem 1. A topological space is metacompact if and only if every filter of

type M on the space has nonempty adherence.
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Proof. For the necessity proof, let the space X be metacompact and let Ω be a

filter on X such that adhΩ is empty. Then {X −F : F ∈ Ω} is an open cover of X

and thus, has an open point-finite refinement κ. Let κ∗ = {X −G : G ∈ κ}. Then

κ∗ ⊂ Ω since if G is an element of κ, some F ∈ Ω satisfies G ⊂ X − F ⊂ X − F

so F ⊂ X − G. Also, it is clear that κ∗ is p.d. since κ is point-finite and that

adh κ∗ = ∩G∈κ(X −G) = ∅. Thus, Ω is not of type M. For the sufficiency proof,

suppose every filter of type M on the space has nonempty adherence, and let Ω

be an open cover of X with no finite subcover. Then {X − ∪ΓA : Γ ⊂ Ω,Γ finite}

is a base for a filter on X with empty adherence which, from Lemma 1, has a p.d.

subcollection Λ consisting of closed subsets with empty adherence; then {X − F :

F ∈ Λ} is a point-finite collection of open sets. For each F ∈ Λ choose a finite

Ω(F ) ⊂ Ω such that X − ∪Ω(F )A ⊂ F , so X − F ⊂ ∪Ω(F )A. For F ∈ Λ, let

H(F ) = {A ∩ (X − F ) : A ∈ Ω(F )} and let R = ∪F∈ΛH(F ). Clearly each element

R is a subset of some element of Ω. Also

⋃

R

V =
⋃

F∈Λ

[

(X − F ) ∩
⋃

Ω(F )

A

]

=
⋃

F∈Λ

(X − F ) = X

so R is an open refinement of Ω. We show that R is point-finite. If x ∈ X then

x ∈ X − F for at most finitely many F ∈ Λ. Let Σ be the finite subset of Λ

such that F ∈ Σ implies x ∈ X − F . If Q ∈ R and x ∈ Q, it follows that

Q = A ∩ (X − F ) ∈ H(F ), where F ∈ Σ and hence, x is an element of at most

finitely many elements of R. The proof is complete.

We state the following corollary to Theorem 1 without proof.

Corollary 1. A space is metacompact if and only if every closed filter of type

M on the space has nonempty adherence.

We say that a space is countably compact if each sequence in the space has

a cluster point (a point is a cluster point of a sequence if each open set about the

point contains a subsequence of the sequence). It can readily be shown that a space

is countably compact if and only if each filter with a countable base on the space

has nonempty adherence. The characterization in Theorem 1 may be used to prove

the following.

Theorem 2. A countably compact metacompact space X is compact.

Proof. Let Λ be a closed p.d. subcollection of a filter Ω on X . For x ∈ X , let

Λ(x) = {F ∈ Λ : x 6∈ F}. Choose x0 ∈ X and for each positive integer n, choose
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xn ∈ Wn = ∩n−1
k=0 ∩F∈Λ(xk) F . Then Wn 6= ∅, Wn is closed and Wn+1 ⊂ Wn. Since

X is countably compact, choose y ∈ X to be a cluster point of the sequence xn. It

follows that for all n, y ∈ Wn ⊂ ∩∞
k=0 ∩F∈Λ(xk) F . Also, y ∈ F ∈ Λ − ∪∞

k=0Λ(xk)

for each F , since xn ∈ F for each F ∈ Λ − ∪∞
k=0Λ(xk). Consequently adh Λ 6= ∅

and so Ω is of type M. Thus, adh Ω 6= ∅ since the space is metacompact. This

completes the proof.

Lemma 2. If g:X → Y is continuous and Λ is a filter of type M on X , then

the filter generated by {g(F ) : F ∈ Λ} is of type M on Y .

Proof. Let Γ be a closed p.d. subcollection of the filter generated by {g(F ) :

F ∈ Λ}. Then {g−1(Q) : Q ∈ Γ} is easily shown to be a closed p.d. subcollection of

Λ. Thus, ∩Q∈Γg
−1(Q) 6= ∅. Since g(∩Q∈Γg

−1(Q)) ⊂ ∩Q∈ΓQ, we have adh Γ 6= ∅.

This completes the proof.

Lemma 2 is especially interesting when we note that if Ω is an open covering

of X , {g(V ) : V ∈ Ω} need not be a collection of open sets.

Corollary 2. Let X be a space and A ⊂ B. Each filter of type M on A is a

base for a filter of type M on B.

Proof. The identity function from the subspace A to the subspace B is contin-

uous. An application of Theorem 2 completes the proof.

The following proofs of some known results exhibit how the result of Lemma

2 may be used. Hereafter, a base for a filter of type M will be referred to as a

filterbase of type M.

Theorem 3. A closed subspace of a metacompact space is metacompact.

Proof. By Corollary 2, a filterbase of type M on A ⊂ X is a filterbase of

type M on X and thus, has nonempty adherence in X . If A is closed then such a

filterbase has nonempty adherence in A. The proof is complete.

Theorem 4. Each subspace of a metacompact space X is metacompact if and

only if each open subspace is metacompact.

Proof. The necessity is obvious. Now suppose A is a subspace of X and

that Ω is a filterbase of type M on A such that A ∩ adh Ω = ∅. Then A ⊂

X − adh Ω, so Ω is a filterbase of type M on X − adh Ω. This is a contradiction

since (X − adh Ω) ∩ adh Ω = ∅. The proof is finished.

Recall that a closed continuous g:X → Y is called perfect if g−1(v) is compact

for each v ∈ Y .



14 MISSOURI JOURNAL OF MATHEMATICAL SCIENCES

Theorem 5. If g:X → Y is perfect and Y is metacompact, then X is meta-

compact.

Proof. Let Λ be a closed filterbase of type M on X . Then {g(F ) : F ∈ Λ} is a

closed filterbase of type M on Y . Let v ∈ ∩F∈Λg(F ). Then {F ∩ g−1(v) : F ∈ Λ}

is a closed filterbase on g−1(v). Thus, (∩F∈ΛF )∩ g−1(v) 6= ∅ so adh Λ 6= ∅ and the

proof is complete.

Theorem 6. The product of a compact space and a metacompact space is

metacompact.

Proof. The projection p:X × Y → Y is perfect. The proof is complete.

An analysis of the proof of Theorem 2 leads us to a proof in terms of open

sets. The proof given below should be compared with that given in [1]. For an open

covering, Γ, of a space X , and x ∈ X , we will denote {V ∈ Γ : x ∈ V } by Γ(x).

Evidently a space X is metacompact if and only if for every open covering of the

space there is an open refinement Γ with Γ(x) finite for each x. If λ is an infinite

cardinal number, we will say that X is metacompact of order λ if for every open

covering, there is an open refinement Γ with cardinality of Γ(x) ≤ λ for each x, and

is λ-compact if every open covering of cardinality ≤ λ has a finite subcovering. A

metacompact space is metacompact of order λ for each λ.

Theorem 7. A countably compact metacompact space X is compact.

Proof. It will be sufficient to show that each point-finite open covering of

X contains a finite subcovering. Let Γ be a point-finite covering with no finite

subcovering. Choose x0 ∈ X and for each natural number n choose xn ∈ Wn =

X − ∪n−1
k=0 ∪V ∈Γ(xk) V . Then Wn 6= ∅ and Wn is closed. It is also easy to see that

Wn+1 ⊂ Wn. Let y be a cluster point of the sequence xn. It is easy to show that

y ∈ ∩∞
n=1Wn = X −∪∞

k=0 ∪V ∈Γ(xk) V , and that y ∈ X − V for V ∈ Γ−∪∞
k=0Γ(xk).

This contradiction completes the proof.

Theorem 8. If a space X is λ-compact and metacompact of order λ, the space

is compact.

Proof. Using the same format as in the proof of Theorem 7, we note that

Wn 6= ∅, since the cardinality of ∪n−1
k=0Γ(xk) ≤ λ and a λ-compact space is countably

compact.

A space is said to have the Bolzano-Weierstrass Property if every infinite subset

has a limit point. A countably compact space has the Bolzano-Weierstrass property

and, if singletons are closed sets, a space with the Bolzano-Weierstrass property is

countably compact. We see from the following example that a metacompact space
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which satisfies the Bolzano-Weierstrass property might fail to be compact. Let X

be the set of positive integers and T be the topology on X with base {{2n−1, 2n} :

n ∈ X}. Then (X,T ) has the Bolzano-Weierstrass property, is metacompact, but

is clearly not compact.
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