ON THE RATE OF CONVERGENCE FOR THE CHEBYSHEV SERIES

Kamel Al-Khaled

Abstract

Let $f(x)$ be a function of bounded variation on $[-1,1]$ and $S_{n}(f ; x)$ the nth partial sum of the expansion of $f(x)$ in a Chebyshev series of the second kind. In this note we give the estimate for the rate of convergence of the sequence $S_{n}(f ; x)$ to $f(x)$ in terms of the modulus of continuity of the total variation of $f(x)$.

1. Introduction. Let $U_{n}(x)$ be the Chebyshev polynomial of the second kind [4]. Let $f(x)$ be a function of bounded variation on $[-1,1]$ and $S_{n}(f ; x)$ the nth partial sum of the expansion of $f(x)$ in a Chebyshev series of the second kind:

$$
\sum_{n=0}^{\infty} a_{n} U_{n}(x)
$$

with

$$
\begin{equation*}
a_{n}=\frac{2}{\pi} \int_{-1}^{1}\left(1-y^{2}\right)^{1 / 2} f(y) \frac{\sin (n+1) \arccos y}{\sin \arccos y} d y, \quad(n=0,1, \ldots) \tag{1.1}
\end{equation*}
$$

According to the equiconvergence theorem for Jacobi series [4], we know that

$$
\lim _{n \rightarrow \infty} S_{n}(f ; x)=\frac{1}{2}(f(x+0)+f(x-0)), \quad x \in(-1,1)
$$

In this note we shall find an estimate for the rate of convergence of the sequence $S_{n}(f ; x)$ to $f(x)$. Results of this type for Fourier series of 2π-periodic functions of bounded variation were proved by Bojanic [2].
2. Preliminary Results. Before proving the main theorem we shall state a preliminary result. Al-Khaled [1] has studied the behavior of Chebyshev series for functions of bounded variation on $[-1,1]$ and he proved the following Theorem.

Theorem 2.1. If $f(x)$ is a function of bounded variation on $[-1,1]$. Let

$$
A_{x}(y)= \begin{cases}f(y)-f(x-0), & -1 \leq y<x \\ 0, & y=x \\ f(y)-f(x+0), & x<y \leq 1\end{cases}
$$

Then for every $x \in(-1,1)$ and $n \geq 2$ we have

$$
\begin{align*}
& \left|S_{n}(f ; x)-\frac{1}{2}(f(x+0)+f(x-0))\right| \leq \frac{9}{n \sqrt{1-x^{2}}}\left[\frac{1}{1+x} \sum_{k=1}^{n} V_{x-(1+x) / k}^{x}\left(A_{x}\right)\right. \\
& \left.+\frac{1}{1-x} \sum_{k=1}^{n} V_{x}^{x+(1-x) / k}\left(A_{x}\right)\right]+\frac{4}{n \pi \sqrt{1-x^{2}}}|f(x+0)-f(x-0)| \tag{2.1}
\end{align*}
$$

where $V_{a}^{b} A_{x}$ is the total variation of A_{x} on $[a, b]$. Since $A_{x}(y)$ is continuous at $y=x$, the right-hand side of (2.1) converges to zero. For Theorem 2.1, we can make a rough estimate.

Corollary 2.2. Under the assumption of Theorem 2.1, we have

$$
\begin{align*}
& \left|S_{n}(f ; x)-\frac{1}{2}(f(x+0)+f(x-0))\right| \leq \frac{18}{n\left(1-x^{2}\right)^{3 / 2}} \sum_{k=1}^{n} V_{x-(1+x) / k}^{x+(1-x) / k}\left(A_{x}\right) \\
& +\frac{4}{n \pi \sqrt{1-x^{2}}}|f(x+0)-f(x-0)|, \quad x \in(-1,1), \quad n \geq 2 \tag{2.2}
\end{align*}
$$

Proof. For the quantities in equation (2.1), we note that

$$
\begin{aligned}
\frac{1}{1+x} \sum_{k=1}^{n} V_{x-(1+x) / k}^{x}\left(A_{x}\right) & =\frac{1-x}{\left(1-x^{2}\right)} \sum_{k=1}^{n} V_{x-(1+x) / k}^{x}\left(A_{x}\right) \\
& \leq \frac{2}{1-x^{2}} \sum_{k=1}^{n} V_{x-(1+x) / k}^{x}\left(A_{x}\right)
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
\frac{1}{1-x} \sum_{k=1}^{n} V_{x}^{x+(1-x) / k}\left(A_{x}\right) & =\frac{1+x}{\left(1-x^{2}\right)} \sum_{k=1}^{n} V_{x}^{x+(1-x) / k}\left(A_{x}\right) \\
& \leq \frac{2}{1-x^{2}} \sum_{k=1}^{n} V_{x}^{x+(1-x) / k}\left(A_{x}\right)
\end{aligned}
$$

Combining the above two inequalities we get the required result.
Example 2.1. For a fixed $x \in(-1,1)$, consider a function g of bounded variation on $[-1,1]$, i.e.,

$$
g(y)=|y-x|, \quad y \in(-1,1)
$$

Now we have $g(x+0)=g(x-0)=g(x)=0$ and $A_{x}(y)=g(y)$, furthermore,

$$
V_{x-(1+x) / k}^{x}\left(A_{x}\right)=\frac{1+x}{k}, \quad V_{x}^{x+(1-x) / k}\left(A_{x}\right)=\frac{1-x}{k},
$$

so, equation (2.1) becomes

$$
\left|S_{n}(g ; x)\right| \leq \frac{9}{n \sqrt{1-x^{2}}}\left(\frac{1}{1+x} \sum_{k=1}^{n} \frac{1+x}{k}+\frac{1}{1-x} \sum_{k=1}^{n} \frac{1-x}{k}\right)=\frac{18}{n \sqrt{1-x^{2}}} \sum_{k=1}^{n} \frac{1}{k}
$$

But,

$$
\sum_{k=1}^{n} \frac{1}{k}=1+\frac{1}{2}+\cdots+\frac{1}{n}=\ln n+\gamma+O(1)
$$

Therefore, by Theorem 2.1 we get an estimate

$$
\begin{equation*}
S_{n}(g ; x)-g(x)=O\left(\frac{\ln n}{n \sqrt{1-x^{2}}}\right) \tag{2.3}
\end{equation*}
$$

Hereafter, the bounds of the terms " O " are independent of n and x. If we apply the above corollary from $V_{x-(1+x) / k}^{x+(1-x) / k}\left(A_{x}\right)=2 / k$, we shall obtain another estimate

$$
\begin{equation*}
S_{n}(g ; x)-g(x)=O\left(\frac{\ln n}{n\left(1-x^{2}\right) \sqrt{1-x^{2}}}\right) \tag{2.4}
\end{equation*}
$$

Comparing (2.3) with (2.4), we see that when $|x| \rightarrow 1$, the estimate (2.3) is more exact than (2.4).
3. The Main Result. Now we state and prove our main result.

Theorem 3.1. If $f(x)$ is a continuous function of bounded variation on $[-1,1]$ and $\omega_{v(f)}(\delta)$ is the modulus of continuity of the total variation $V_{-1}^{t}(f)$, then for $x \in(-1,1), n \geq 2$ we have

$$
\begin{align*}
& \left|S_{n}(f ; x)-f(x)\right| \leq \frac{9}{n \sqrt{1-x^{2}}}\left\{\frac{1}{1+x} \omega_{v(f)}(1+x)+\frac{1}{1-x} \omega_{v(f)}(1-x)\right\} \\
& +\frac{9}{n \sqrt{1-x^{2}}} \int_{1 / n}^{1}\left\{\frac{\omega_{v(f)}((1-x) u)}{1-x}+\frac{\omega_{v(f)}((1+x) u)}{1+x}\right\} \frac{d u}{u^{2}} \tag{3.1}
\end{align*}
$$

especially, when $V_{-1}^{t}(f)$ belongs to the class Lip $\alpha(\alpha \in(0,1))$,

$$
\begin{equation*}
S_{n}(f ; x)-f(x)=O\left(\frac{1}{n^{\alpha}\left(1-x^{2}\right)^{3 / 2-\alpha}}\right) \tag{3.2}
\end{equation*}
$$

Further, for the Cesaro mean $(c, \lambda), \lambda \in(0,1)$:

$$
\begin{equation*}
\sigma_{n}^{\lambda}(f ; x)=\frac{1}{(\lambda)_{n}} \sum_{k=0}^{n}(\lambda-1)_{n-k} S_{k}(f ; x) \tag{3.3}
\end{equation*}
$$

where in general

$$
(\beta)_{n}=\frac{\Gamma(\beta+n+1)}{\Gamma(\beta+1) \Gamma(n+1)}
$$

We have also

$$
\begin{equation*}
\sigma_{n}^{\lambda}(f ; x)-f(x)=O\left(\frac{1}{n^{\gamma}\left(1-x^{2}\right)^{3 / 2-\alpha}}\right) \tag{3.4}
\end{equation*}
$$

where $\gamma=\min \{\alpha, 1-\lambda\}$.
Proof. Since $f(x)$ is a continuous function, we have $A_{x}(y)=f(y)-f(x)$, so

$$
V_{x}^{x+(1-x) / k}\left(A_{x}\right)=V_{x}^{x+(1-x) / k}(f)-V_{x}^{x}(f) \leq \omega_{v(f)}\left(\frac{1-x}{k}\right), \quad 2 \leq k \leq n
$$

and

$$
V_{x-(1+x) / k}^{x}\left(A_{x}\right) \leq \omega_{v(f)}\left(\frac{1+x}{k}\right), \quad 2 \leq k \leq n
$$

and

$$
V_{-1}^{x}\left(A_{x}\right) \leq \omega_{v(f)}(1+x), \quad V_{x}^{1}\left(A_{x}\right) \leq \omega_{v(f)}(1-x)
$$

Thus,applying Theorem 2.1, then for $x \in(-1,1), n \geq 2$ we obtain

$$
\begin{aligned}
& \left|S_{n}(f ; x)-f(x)\right| \leq \frac{9}{n \sqrt{1-x^{2}}}\left\{\frac{1}{1+x} \omega_{v(f)}(1+x)+\frac{1}{1-x} \omega_{v(f)}(1-x)\right\} \\
& +\frac{9}{n \sqrt{1-x^{2}}}\left\{\frac{1}{1-x} \sum_{k=2}^{n} \omega_{v(f)}\left(\frac{1-x}{k}\right)+\frac{1}{1+x} \sum_{k=2}^{n} \omega_{v(f)}\left(\frac{1+x}{k}\right)\right\}
\end{aligned}
$$

From this and noting that

$$
\sum_{k=2}^{n} \omega_{v(f)}\left(\frac{1-x}{k}\right) \leq \int_{1 / n}^{1} \omega_{v(f)}((1-x) u) u^{-2} d u
$$

and

$$
\sum_{k=2}^{n} \omega_{v(f)}\left(\frac{1+x}{k}\right) \leq \int_{1 / n}^{1} \omega_{v(f)}((1+x) u) u^{-2} d u
$$

we have formula (3.1).
When $V_{-1}^{t}(f) \in \operatorname{Lip} \alpha(0<\alpha<1)$, we have

$$
\omega_{v(f)}((1-x) u)=O\left((1-x)^{\alpha} u^{\alpha}\right) \quad \text { and } \omega_{v(f)}((1+x) u)=O\left((1+x)^{\alpha} u^{\alpha}\right)
$$

From (3.1), we get (3.2). Now by (3.3) and $(\beta)_{n}=O\left(n^{\beta}\right)$, we know for $x \in(-1,1)$, $n \geq 2$ that

$$
\begin{align*}
\sigma_{n}^{\lambda}(f ; x)-f(x) & =\frac{1}{(\lambda)_{n}} \sum_{k=0}^{n}(\lambda-1)_{n-k}\left(S_{k}(f ; x)-f(x)\right) \\
& =\frac{1}{(\lambda)_{n}} \sum_{k=2}^{n-1}(\lambda-1)_{n-k}\left(S_{k}(f ; x)-f(x)\right) \\
& +O(1 / n)+O\left(\frac{1}{n^{\alpha+\lambda}\left(1-x^{2}\right)^{3 / 2-\alpha}}\right) \tag{3.5}
\end{align*}
$$

According to formula (3.2), we get

$$
\begin{equation*}
\frac{1}{(\lambda)_{n}} \sum_{k=2}^{n-1}(\lambda-1)_{n-k}\left(S_{k}(f ; x)-f(x)\right)=O\left(\frac{1}{n^{\lambda}\left(1-x^{2}\right)^{3 / 2-\alpha}}\right) \sum_{k=2}^{n-1} \frac{1}{k^{\alpha}(n-k)^{1-\lambda}} \tag{3.6}
\end{equation*}
$$

Let $\gamma=\min \{\alpha, 1-\lambda\}$. By the inequality

$$
(a+b)^{\gamma} \leq 2^{\gamma}\left(a^{\gamma}+b^{\gamma}\right), a>0, b>0
$$

we see that

$$
\begin{aligned}
\sum_{k=2}^{n-1} \frac{1}{k^{\alpha}(n-k)^{1-\lambda}} & \leq \sum_{k=2}^{n-1} \frac{1}{k^{\gamma}(n-k)^{\gamma}} \\
& =\sum_{k=2}^{n-1} \frac{1}{n^{\gamma}}\left(\frac{1}{k}+\frac{1}{n-k}\right)^{\gamma} \\
& =O\left(\frac{1}{n^{\gamma}}\right)\left\{\sum_{k=2}^{n-1} \frac{1}{k^{\gamma}}+\sum_{k=2}^{n-1} \frac{1}{(n-k)^{\gamma}}\right\} \\
& =O\left(\frac{1}{n^{2 \gamma-1}}\right)
\end{aligned}
$$

From this and (3.5), (3.6), we obtain the formula (3.4). This completes the proof of Theorem 3.1.

A result of the type of equality in Theorem 3.1 for 2π-periodic continuous function of bounded variation on $[-\pi, \pi]$ was proved by Natanson [3].

$\underline{\text { References }}$

1. K. Al-Khaled, "An Estimate for the Rate of Approximation of Functions by Chebyshev Polynomials," Revista Colombiana de Matematicas, (to appear).
2. R. Bojanic, "An Estimate of the Rate of Convergence for Fourier Series of Functions of Bounded Variation," Publ. Inst. Math. (Belgrade) 26 (1979), 5760.
3. G. I. Natanson, "On Fourier Series of Continuous Functions of Bounded Variation," (in Russian), Vest, Leningrad, Univ. 7 (1972), 154-155.
4. G. Szego, Orthogonal Polynomials, American Mathematical Society Colloqium Publ., 1939.

Kamel Al-Khaled
Department of Mathematics and Statistics
Jordan University of Science and Technology
P.O. Box 3030

Irbid 22110, Jordan
email: applied@just.edu.jo

