THE MINIMAL RANK OF THE MATRIX EXPRESSION A-BX - YC

Yongge Tian

Abstract

The minimal rank of the matrix expression $A-B X-Y C$ with respect to the choice of X and Y are determined using generalized inverses of matrices. Some of their applications are also presented.

Suppose that

$$
\begin{equation*}
p(X, Y)=A-B X-Y C \tag{1}
\end{equation*}
$$

is a linear matrix expression over the complex number field, where A, B, and C are $m \times n, m \times k$, and $l \times n$ matrices, respectively; X and Y are $k \times n$ and $m \times l$ variant matrices, respectively. In this article we consider the minimal rank of $p(X, Y)$ with respect to the choice of X and Y, and present some of their applications. To do so, we need some well-known formulas related to ranks and generalized inverse of matrices.

Lemma 1 [2] [3]. Let $A \in \mathbb{C}^{m \times n}, B \in \mathbb{C}^{m \times k}$ and $C \in \mathbb{C}^{l \times n}$ be given. Then they satisfy the rank equalities

$$
\begin{align*}
& r[A, B]=r(A)+r\left(B-A A^{-} B\right)=r(B)+r\left(A-B B^{-} A\right), \tag{2}\\
& r\left[\begin{array}{l}
A \\
C
\end{array}\right]=r(A)+r\left(C-C A^{-} A\right)=r(C)+r\left(A-A C^{-} C\right), \tag{3}\\
& r\left[\begin{array}{ll}
A & B \\
C & 0
\end{array}\right]=r(B)+r(C)+r\left[\left(I_{m}-B B^{-}\right) A\left(I_{n}-C^{-} C\right)\right], \tag{4}
\end{align*}
$$

where $(\cdot)^{-}$denotes an inner inverse of a matrix.
We are ready to establish the main result of this article.
Theorem 2. The minimal rank of $p(X, Y)$ in (1) with respect to the choice of X and Y is

$$
\min _{X, Y} r(A-B X-Y C)=r\left[\begin{array}{cc}
A & B \tag{5}\\
C & 0
\end{array}\right]-r(B)-r(C) \text {. }
$$

The matrices X and Y satisfying (5) are given by

$$
\begin{align*}
X & =B^{-} A+U C+\left(I_{k}-B^{-} B\right) U_{1} \tag{6}\\
Y & =\left(I_{m}-B B^{-}\right) A C^{-}-B U+U_{2}\left(I_{l}-C C^{-}\right), \tag{7}
\end{align*}
$$

where U, U_{1} and U_{2} are arbitrary.

Proof. Let

$$
M=\left[\begin{array}{ll}
A & B \\
C & 0
\end{array}\right]
$$

Then its rank obviously satisfies the inequality

$$
\begin{equation*}
r(M) \leq r(A)+r(B)+r(C) \tag{8}
\end{equation*}
$$

Now replacing A in (8) by $p(X, Y)$ in (1), we obtain the following rank inequality

$$
r\left[\begin{array}{cc}
A-B X-Y C & B \tag{9}\\
C & 0
\end{array}\right] \leq r(A-B X-Y C)+r(B)+r(C)
$$

It is easy to see by block elementary operations of matrices that

$$
r\left[\begin{array}{cc}
A-B X-Y C & B \\
C & 0
\end{array}\right]=r\left[\begin{array}{cc}
A & B \\
C & 0
\end{array}\right]
$$

Thus, (9) becomes

$$
\begin{equation*}
r(A-B X-Y C) \geq r(M)-r(B)-r(C) \tag{10}
\end{equation*}
$$

Observe that the right-hand side of (10) involves no X and Y. Thus, $r(M)-r(B)-$ $r(C)$ is a lower bound for the rank of $p(X, Y)$ with respect to X and Y. On the other hand, putting (6) and (7) in $p(X, Y)$ yields

$$
\begin{aligned}
p(X, Y) & =A-B B^{-} A-B U C-\left(I_{m}-B B^{-}\right) A C^{-} C+B U C \\
& =\left(I_{m}-B B^{-}\right) A\left(I_{n}-C^{-} C\right)
\end{aligned}
$$

In that case, the rank of $p(X, Y)$ by (4) is

$$
\begin{equation*}
\left.r[p(X, Y)]=r\left[\left(I_{m}-B B^{-}\right) A\right)\left(I_{n}-C^{-} C\right)\right]=r(M)-r(B)-r(C) \tag{11}
\end{equation*}
$$

Combining (10) with (11), we know $r(M)-r(B)-r(C)$ is the minimal rank of $p(X, Y)$ with respect to X and Y, and the matrices of X and Y satisfying (5) are given by (6) and (7).

A direct consequence of Theorem 2 is given below, which was established in [1] and [8].

Corollary 3. Let $p(X, Y)$ be given by (1). Then the following statements are equivalent.
(a) $\min _{X, Y} r(A-B X-Y C)=0$.
(b) The matrix equation $B X+Y C=A$ is solvable.
(c)

$$
r\left[\begin{array}{ll}
A & B \\
C & 0
\end{array}\right]=r(B)+r(C)
$$

(d) $\left(I_{m}-B B^{-}\right) A\left(I_{n}-C^{-} C\right)=0$.

In that case, the general solution of $B X+Y C=A$ is

$$
\begin{align*}
X & =B^{-} A+U C+\left(I_{k}-B^{-} B\right) U_{1} \tag{12}\\
Y & =\left(I_{m}-B B^{-}\right) A C^{-}-B U+U_{2}\left(I_{l}-C C^{-}\right) \tag{13}
\end{align*}
$$

Observe that (12) and (13) have the same form as (1). Thus, we can also find the minimal ranks of solutions of $B X+Y C=A$ when it is solvable.

Corollary 4. Suppose that the matrix equation $B X+Y C=A$ is solvable. Then the minimal ranks of solutions X and Y to $B X+Y C=A$ are

$$
\min _{B X+Y C=A} r(X)=r\left[\begin{array}{l}
A \tag{14}\\
C
\end{array}\right]-r(C)
$$

and

$$
\begin{equation*}
\min _{B X+Y C=A} r(Y)=r[A, B]-r(B) . \tag{15}
\end{equation*}
$$

Proof. Since $B X+Y C=A$ is solvable, it follows by Corollary 3(d) that

$$
A-B B^{-} A-A C^{-} C+B B^{-} A C^{-} C=0
$$

In that case, applying (5) and then (3) to (12) produces

$$
\begin{aligned}
\min _{B X+Y C=A} r(X) & =\min _{U, U_{1}} r\left[B^{-} A+U C+\left(I_{k}-B^{-} B\right) U_{1}\right] \\
& =r\left[\begin{array}{cc}
B^{-} A & I_{k}-B^{-} B \\
C & 0
\end{array}\right]-r\left(I_{k}-B^{-} B\right)-r(C) \\
& =r\left[\begin{array}{cc}
B^{-} A & I_{k} \\
C & 0 \\
0 & B
\end{array}\right]-r(B)-r\left(I_{k}-B^{-} B\right)-r(C) \\
& =r\left[\begin{array}{cc}
0 & I_{k} \\
C & 0 \\
B B^{-} A & 0
\end{array}\right]-k-r(C) \\
& =r\left[\begin{array}{cc}
C & -r(C) \\
B B^{-} A
\end{array}\right] \\
& =r\left[\begin{array}{c}
C \\
A-A C^{-} C+B B^{-} A C^{-} C
\end{array}\right]-r(C)=r\left[\begin{array}{l}
C \\
A
\end{array}\right]-r(C)
\end{aligned}
$$

establishing (14). Similarly, we can derive (15) from (13) and (5).
Theorem 5. Suppose that the two linear matrix equations

$$
\begin{equation*}
A_{1} X_{1} B_{1}=C_{1} \quad \text { and } \quad A_{2} X_{2} B_{2}=C_{2} \tag{16}
\end{equation*}
$$

are solvable, respectively, where X_{1} and X_{2} are $k \times l$ matrices. Then (a) The minimal rank of the difference $X_{1}-X_{2}$ of two solutions of (16) is

$$
\min _{\substack{A_{1} X_{1} B_{1}=C_{1} \tag{17}\\
A_{2} X_{2} B_{2}=C_{2}}} r\left(X_{1}-X_{2}\right)=r\left[\begin{array}{ccc}
C_{1} & 0 & A_{1} \\
0 & -C_{2} & A_{2} \\
B_{1} & B_{2} & 0
\end{array}\right]-r\left[\begin{array}{l}
A_{1} \\
A_{2}
\end{array}\right]-r\left[B_{1}, B_{2}\right] .
$$

(b) [5] [6] In particular, the pair of matrix equations in (16) have a common solution if and only if

$$
r\left[\begin{array}{ccc}
C_{1} & 0 & A_{1} \tag{18}\\
0 & -C_{2} & A_{2} \\
B_{1} & B_{2} & 0
\end{array}\right]-r\left[\begin{array}{c}
A_{1} \\
A_{2}
\end{array}\right]+r\left[B_{1}, B_{2}\right]
$$

Proof. It is well-known (see [7]) that a matrix equation of the form $A X B=C$ is solvable if and only if $A A^{-} C=C$ and $C B^{-} B=C$ hold. In that case, the general solution $A X B=C$ can be written as

$$
X=A^{-} C B^{-}+\left(I_{k}-A^{-} A\right) U+V\left(I_{l}-B B^{-}\right)
$$

where U and V are arbitrary. If the two equations in (16) are solvable, respectively, their general solutions can be written as

$$
X_{1}=A_{1}^{-} C_{1} B_{1}^{-}+\left(I_{k}-A_{1}^{-} A_{1}\right) U_{1}+V_{1}\left(I_{l}-B_{1} B_{1}^{-}\right)
$$

and

$$
X_{2}=A_{2}^{-} C_{2} B_{2}^{-}+\left(I_{k}-A_{2}^{-} A_{2}\right) U_{2}+V_{2}\left(I_{l}-B_{2} B_{2}^{-}\right)
$$

where U_{1}, V_{1}, U_{2} and V_{2} are arbitrary. In that case,

$$
\begin{aligned}
& X_{1}-X_{2}= \\
& A_{1}^{-} C_{1} B_{1}^{-}-A_{2}^{-} C_{2} B_{2}^{-}+\left[I_{k}-A_{1}^{-} A_{1}, I_{k}-A_{2}^{-} A_{2}\right]\left[\begin{array}{c}
U_{1} \\
-U_{2}
\end{array}\right]+\left[V_{1},-V_{2}\right]\left[\begin{array}{c}
I_{l}-B_{1} B_{1}^{-} \\
I_{l}-B_{2} B_{2}^{-}
\end{array}\right] .
\end{aligned}
$$

Thus, by (5) we find that

$$
\begin{align*}
\min _{\substack{A_{1} X_{1} B_{1}=C_{1} \\
A_{2} X_{2} B_{2}=C_{2}}} r\left(X_{1}-X_{2}\right)= & r\left[\begin{array}{ccc}
A_{1}^{-} C_{1} B_{1}^{-}-A_{2}^{-} C_{2} B_{2}^{-} & I_{k}-A_{1}^{-} A_{1} & I_{k}-A_{2}^{-} A_{2} \\
I_{l}-B_{1} B_{1}^{-} & 0 & 0 \\
I_{l}-B_{2} B_{2}^{-} & 0 & 0
\end{array}\right] \\
& -r\left[\begin{array}{c}
I_{l}-B_{1} B_{1}^{-} \\
I_{l}-B_{2} B_{2}^{-}
\end{array}\right]-r\left[I_{k}-A_{1}^{-} A_{1}, I_{k}-A_{2}^{-} A_{2}\right] . \tag{19}
\end{align*}
$$

Simplifying by (2) and (3) the ranks of the above three block matrices, we get

$$
\begin{aligned}
& r\left[\begin{array}{ccc}
A_{1}^{-} C_{1} B_{1}^{-}-A_{2}^{-} C_{2} B_{2}^{-} & I_{k}-A_{1}^{-} A_{1} & I_{k}-A_{2}^{-} A_{2} \\
I_{l}-B_{1} B_{1}^{-} & 0 & 0 \\
I_{l}-B_{2} B_{2}^{-} & 0 & 0
\end{array}\right] \\
& =r\left[\begin{array}{ccccc}
A_{1}^{-} C_{1} B_{1}^{-}-A_{2}^{-} C_{2} B_{2}^{-} & I_{k} & I_{k} & 0 & 0 \\
I_{l} & 0 & 0 & B_{1} & 0 \\
I_{l} & 0 & 0 & 0 & B_{2} \\
0 & A_{1} & 0 & 0 & 0 \\
0 & 0 & A_{2} & 0 & 0
\end{array}\right] \\
& -r\left(A_{1}\right)-r\left(A_{2}\right)-r\left(B_{1}\right)-r\left(B_{2}\right) \\
& =r\left[\begin{array}{ccccc}
0 & I_{k} & 0 & 0 & 0 \\
I_{l} & 0 & 0 & B_{1} & 0 \\
I_{l} & 0 & 0 & 0 & B_{2} \\
-C_{1} B_{1}^{-} & 0 & -A_{1} & 0 & 0 \\
C_{2} B_{2}^{-} & 0 & A_{2} & 0 & 0
\end{array}\right]-r\left(A_{1}\right)-r\left(A_{2}\right)-r\left(B_{1}\right)-r\left(B_{2}\right) \\
& =r\left[\begin{array}{ccccc}
0 & I_{k} & 0 & 0 & 0 \\
I_{l} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -B_{1} & B_{2} \\
0 & 0 & -A_{1} & C_{1} & 0 \\
0 & 0 & A_{2} & 0 & -C_{2}
\end{array}\right]-r\left(A_{1}\right)-r\left(A_{2}\right)-r\left(B_{1}\right)-r\left(B_{2}\right) \\
& =r\left[\begin{array}{ccc}
C_{1} & 0 & A_{1} \\
0 & -C_{2} & A_{2} \\
B_{1} & B_{2} & 0
\end{array}\right]+k+l-r\left(A_{1}\right)-r\left(A_{2}\right)-r\left(B_{1}\right)-r\left(B_{2}\right), \\
& r\left[\begin{array}{l}
I_{l}-B_{1} B_{1}^{-} \\
I_{l}-B_{2} B_{2}^{-}
\end{array}\right]=r\left[\begin{array}{ccc}
I_{l} & B_{1} & 0 \\
I_{l} & 0 & B_{2}
\end{array}\right]-r\left(B_{1}\right)-r\left(B_{2}\right)=r\left[B_{1}, B_{2}\right]+l-r\left(B_{1}\right)-r\left(B_{2}\right),
\end{aligned}
$$

and

$$
\begin{aligned}
r\left[I_{k}-A_{1}^{-} A_{1}, I_{k}-A_{2}^{-} A_{2}\right] & =r\left[\begin{array}{cc}
I_{k} & I_{k} \\
A_{1} & 0 \\
0 & A_{2}
\end{array}\right]-r\left(A_{1}\right)-r\left(A_{2}\right) \\
& =r\left[\begin{array}{l}
A_{1} \\
A_{2}
\end{array}\right]+k-r\left(A_{1}\right)-r\left(A_{2}\right)
\end{aligned}
$$

Putting the above three in (19) yields (17). The result in part (b) is an immediate consequence of (17).

Corollary 6. Let A and B be two matrices of the same size. Then
(a) The minimal rank of the difference of $A^{-}-B^{-}$of two inner inverses of A and B is

$$
\min _{A^{-}, B^{-}} r\left(A^{-}-B^{-}\right)=r(A-B)+r(A)+r(B)-r[A, B]-r\left[\begin{array}{l}
A \tag{20}\\
B
\end{array}\right]
$$

(b) In particular, A and B have a common inner inverse if and only if

$$
r(A-B)=r\left[\begin{array}{l}
A \tag{21}\\
B
\end{array}\right]+r[A, B]-r(A)-r(B)
$$

Proof. Notice that A^{-}and B^{-}are solutions of the matrix equations $A X A=A$ and $\overline{B Y B}=B$, respectively. Thus (20) follows from (17).

Corollary 7. Let A and B be any two idempotent matrices of the same size. Then their difference $A-B$ satisfies the two rank equalities

$$
r(A-B)=r\left[\begin{array}{l}
A \tag{21}\\
B
\end{array}\right]+r[A, B]-r(A)-r(B)
$$

and

$$
\begin{equation*}
r(A-B)=r(A-A B)+r(A B-B) \tag{22}
\end{equation*}
$$

Proof. Notice that any two idempotent matrices of the same size have the identity matrix as their common inner inverse. Thus (21) follows immediately from Corollary 6(b). When A and B are idempotent, we also find by (2) and (3) that

$$
r\left[\begin{array}{l}
A \\
B
\end{array}\right]=r(B)+r(A-A B) \quad \text { and } \quad r[A, B]=r(A)+r(B-A B) .
$$

Putting them in (21) yields (22).
Corollary 8. Let A be a given matrix, and let X and Y be any two outer inverses of A, that is, $X A X=X$ and $Y A Y=Y$. Then their difference of $X-Y$ satisfies the rank equality

$$
r(X-Y)=r\left[\begin{array}{l}
X \tag{23}\\
Y
\end{array}\right]+r[X, Y]-r(X)-r(Y) .
$$

Proof. Obviously, any two outer inverses of the matrix A have A as their common inner inverse. Thus (23) follows immediately from Corollary 6(b).

On the basis of Corollaries 7 and 8 , one can derive a variety of results related to idempotent matrices and outer inverses of matrices. We shall present them in other papers.

References

1. J. K. Baksalary and P. Kala, "The Matrix Equation $A X+Y B=C$," Linear Algebra and its Applications, 25 (1979), 41-43.
2. G. Marsaglia and G. P. H. Styan, "Equalities and Inequalities for Ranks of Matrices," Linear and Multilinear Algebra, 2 (1974), 269-292.
3. C. D. Meyer, Jr., "Generalized Inverses and Ranks of Block Matrices," SIAM Journal of Applied Mathematics, 25 (1973), 597-602.
4. S. K. Mitra, "Common Solutions to a Pair of Linear Matrix Equations $A_{1} X B_{1}=C_{1}$ and $A_{1} X B_{2}=C_{2}, "$ Proceedings of the Cambridge Philosophical Society, 74 (1973), 213-216.
5. S. K. Mitra, "A Pair of Simultaneous Linear Matrix Equations $A_{1} X B_{1}=C_{1}$ and $A_{2} X B_{2}=C_{2}$ and a Programming Problems," Linear Algebra and its Applications, 131 (1990), 107-123.
6. A. B. Özgüler and N. Akar, "A Common Solution to a Pair of Linear Matrix Equations over a Principal Ideal Domain," Linear Algebra and its Applications, 144 (1991), 85-99.
7. C. R. Rao and S. K. Mitra, Generalized Inverse of Matrices and its Applications, Wiley, New York, 1971.
8. R. E. Roth, "The Equations $A X-Y B=C$ and $A X-X B=C$ in Matrices," Proceedings of the American Mathematical Society, 3 (1952), 392-396.

Yongge Tian
Department of Mathematics and Statistics
Concordia University
Montréal, Québec, Canada H4B 1R6
email: tiany@alcor.concordia.ca

