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ALTERNATIVE PROOFS OF SOME RESULTS

FROM ELEMENTARY ANALYSIS

Richard E. Bayne, James E. Joseph, Myung H. Kwack, and Thomas H. Lawson

In an endeavor to encourage mathematics students to search for and study
various methods of proof we have embarked on a program designed to develop
and present approaches different from those found in the textbooks used by the
students. As a result of this effort proofs of several well-known results from ele-
mentary analysis have been developed and presented. In this article we offer some
of these proofs. Although we do not know if the proofs are new they are elegant,
different from those usually found in books in analysis, and may be of use to stu-
dents and teachers of the subject. First we present two proofs that a real-valued
function which is 1-1 and continuous on an interval I in the reals is either increasing
or decreasing on I. These proofs are different from and should be compared with
that given in [9]. It is commented in [9] that it is possible to give a straightfor-
ward, but cumbersome, proof that involves keeping track of a lot of cases [4]. The
proof given there dispenses with those unpleasant details, but is described by the
author as “rather tricky.” We then apply the so-called “creeping” method to es-
tablish three classical results: Dini’s Lemma, the Bolzano-Weierstrass Theorem for
the reals, and the Heine-Borel Theorem for Euclidean n-space. This method is ab-
stracted and discussed in [6]. Proofs of Dini’s Lemma and the Bolzano-Weierstrass
Theorem are given in [6]. Those proofs should be compared with the proofs offered
here. The proof of the Heine-Borel Theorem joins the method with induction on
the dimension of the space and should be compared with that given in [8].

The article concludes with a nice induction proof of the Cauchy-Schwarz In-
equality for complex numbers, a proof of the Lagrange Identity for complex numbers
obtained by expressing the expansion of
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in a different form, and a generalization of the Lagrange Identity to inner-product
spaces. These proofs should be compared with proofs found in books such as [1, 2,
5, 8], and with a proof in [3] using the upwards-downwards form of the principle of
mathematical induction. We come to our results.

Theorem 1. A real-valued function f which is 1-1 and continuous on an interval
I in the reals is either increasing or decreasing on I.
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Proof. First, if a, b ∈ I and a < b then

min{f(a), f(b)} ≤ f(x) ≤ max{f(a), f(b)}

for all x ∈ [a, b]. To see this, if v ∈ (a, b) satisfies

f(v) < min{f(a), f(b)} or f(v) > max{f(a), f(b)}

choose y satisfying

f(v) < y < min{f(a), f(b)} < max{f(a), f(b)} or

f(v) > y > max{f(a), f(b)} > min{f(a), f(b)}.

Then, from the Intermediate Value Theorem, there exists p ∈ (a, v), q ∈ (v, b) such
that f(p) = f(q) = y, contradicting the hypothesis that f is 1-1. This says that
f achieves absolute extrema on any closed subinterval and at the endpoints of the
interval. Now suppose a, b ∈ I with a < b and f(a) < f(b). Let a ≤ x < y ≤ b.
It follows that f(x) < f(y) so f is increasing on [a, b]. Finally, let x, y ∈ I with
x ≤ a < b ≤ y. Then f(x) < f(y) so f is increasing on [x, y]. The proof is complete.

Another Proof of Theorem 1. Let a, b ∈ I with a < b and define F on [a, b] by

F (x) = (f(b)− f(a))(f(x) − f(a)).

Then F is 1-1 and continuous on [a, b], F (a) = 0, F (b) > 0. Hence, F (x) > 0 for
all x ∈ (a, b]. Now fix y ∈ (a, b] and define G on [a, b] by

G(x) = (f(y)− f(a))(f(y)− f(x)).

Then G is 1-1 and continuous on [a, y], G(y) = 0, G(a) > 0. So G(x) > 0 for all
x ∈ [a, y). Hence, for all x, y such that a ≤ x < y ≤ b,

(f(b)− f(a))(f(y)− f(a)) = F (y) > 0, (∗)

(f(y)− f(a))(f(y)− f(x)) = G(x) > 0, (∗∗)

and consequently
(f(b)− f(a))(f(y)− f(x)) > 0. (∗ ∗ ∗)

If a, b, x, y,∈ I with a < b, x < y then, from inequality (∗ ∗ ∗)

(f(max{b, y})− f(min{a, x}))(f(y)− f(x)) > 0 and

(f(max{b, y})− f(min{a, x}))(f(b)− f(a)) > 0.
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Therefore
(f(b)− f(a))(f(y)− f(x)) > 0.

The proof is complete.

We observe from the proofs above that the next result holds.

Theorem 2. The following statements are equivalent for a continuous real-
valued function f defined on an interval I in the reals.

(a) The function f is 1-1 on I.
(b) The function f is either strictly increasing or strictly decreasing on I.
(c) The function f does not take a local extrema on the interior of I.

The proofs of Dini’s Lemma, the Bolzano-Weierstrass Theorem, and the Heine-
Borel Theorem, given below, utilize a so-called “creeping” method. Again these
proofs should be compared with those in [2, 4, 6, 7, 8]. A real-valued function
defined on a subset of the reals is upper semicontinuous at x if for each y satisfying
f(x) < y there is an open interval I such that x ∈ I and each v ∈ I which is in the
domain of f satisfies f(v) < y.

Dini’s Lemma. If fn is a sequence of upper semicontinuous real-valued func-
tions defined on [0, 1] such that, at each point x, the sequence fn(x) is a nonincreas-
ing sequence converging to 0, then fn converges uniformly to the constant function
0 on [0, 1].

Proof. Let ǫ > 0. Choose m such that fm(0) < ǫ and z ∈ (0, 1] such that
fm([0, z]) ⊂ [0, ǫ). For each n ≥ m we have fn([0, z]) ⊂ [0, ǫ). Let c = sup{z ∈
(0, 1] : fn([0, z]) ⊂ [0, ǫ) , ultimately}. Choose a ∈ (0, c) such that fn([a, c]) ⊂
[0, ǫ) , ultimately and b ∈ [c, 1] such that fn([0, b]) ⊂ [0, ǫ) , ultimately. It follows
that fn([0, c]) ⊂ [0, ǫ) , ultimately. If c < 1 we may choose b satisfying c < b < 1
and fn([0, b]) ⊂ [0, ǫ) , ultimately. This would contradict a property of supremum.
Hence, fn([0, 1]) ⊂ [0, ǫ) , ultimately.

Let N be the set of natural numbers. A sequence in a set X is a function from
N to X . If f is a sequence in X , a subsequence of f is a sequence of the form f ◦ µ
where µ:N → N is strictly increasing. It can be shown by induction that

(i) If n ∈ N and µ1, . . . , µn are strictly increasing from N to N, then µ1 ◦ · · · ◦ µn

is strictly increasing.
(ii) If µ:N → N is strictly increasing then µ(n) ≥ n.

The following proposition is used often in mathematics.

Proposition. If {Fn : n ∈ N} is a family of subsets of a set X such that
Fn+1 ⊂ Fn and f is a sequence in X such that, for each n, some subsequence of f
is in Fn, there is a subsequence h of f such that, for each n, h is ultimately in Fn.
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Proof. Let f ◦ µn be a subsequence of f in Fn. Define ψ:N → N by ψ(n) =
µn ◦ · · · ◦ µ1(n). Then

ψ(n+ 1) = µn+1 ◦ µn ◦ · · · ◦ µ1(n+ 1) ≥ µn ◦ · · · ◦ µ1(n+ 1) > ψ(n).

Hence, h = f ◦ψ is a subsequence of f . Ifm ∈ N and n > m, then h(n) = f ◦ψ(n) ∈
Fn ⊂ Fm. The proof is complete.

Definition. A sequence g in the reals is bounded if g(N) is a bounded subset
of the reals.

Theorem 3 (Bolzano-Weierstrass). Each bounded sequence in the reals has a
convergent subsequence.

Proof. Let xn be a sequence in [a, b] and let c be the supremum of all z such that
no subsequence of xn is in (−∞, z). Note that a is such a z and that b is an upper
bound for the set of such z. It is now quite evident from the proposition immediately
above that some subsequence of xn converges to c and that c = lim inf xn.

Remark 1. The proof of Theorem 3 given in [6] uses, as a statement of the
Bolzano-Weierstrass Theorem, the contrapositive of the statement

Every bounded infinite subset of the reals has an accumulation point.

To facilitate our proof of the Heine-Borel Theorem, we give preliminary defini-
tions, remarks, and notations. The notation R

n will represent Euclidean n-space.

Definition. An n-dimensional symmetric open interval I in R
n is defined by

I = {(x1, . . . , xn) | ak < xk < bk},

where a1, . . . , an, b1, . . . , bn ∈ R, bk − ak = bj − aj for all k, j. The center of I is
the point ((a1 + b1)/2, . . . , (an + bn)/2).

Definition. A subset Q of Rn is said to be open if for each x ∈ Q there is a
symmetric open interval I with center at x such that I ⊂ Q. A subset Q of Rn is
closed if Rn −Q is open.

For a positive real number v,

Sn(v) = {(x1, . . . , xn) ∈ R
n : −v ≤ xk ≤ v for each k}.

Definition. A subset Q of Rn is bounded if Q ⊂ Sn(v) for some v.

It is left to the reader to show that Sn(v) is a closed subset of Rn.

Definition. A collection of sets Λ covers a set K if K ⊂
⋃

Λ V .
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Definition. A subset K of Rn is compact if for each collection Λ of open sets
which covers K, there is a finite Λ∗ ⊂ Λ which covers K.

Remark 2. Each compact subset of Rn is closed and bounded.

Remark 3. Each closed subset of a compact subset of Rn is compact.

Remark 4. If K is a compact subset of Rn and g is a continuous function from
K to R

n+1, then g(K) is a compact subset of Rn+1.

Theorem 4. If Sn(v) is a compact subset of Rn for each positive real number
v, then Sn+1(v) is a compact subset of Rn+1 for each positive real number v.

Proof. Let Λ be a collection of open subsets of Rn+1 which covers Sn+1(v),
and for each y ∈ [−v, v] let L(y) = {(x1, . . . , xn, xn+1) ∈ Sn+1(v) : xn+1 = y}.
Then

{(x1, . . . , xn) ∈ R
n : {(x1, . . . , xn, xn+1) ∈ L(y)} = Sn(v)

and it is easily seen that the function g:Sn(v) → L(y) defined by

g(x1, . . . , xn) = (x1, . . . , xn, y)

is onto and continuous. Let

A = {r ∈ (−v, v] : some finite Γ ⊂ Λ covers
⋃

y≤r

L(y)}.

Since L(−v) is compact choose a finite collection of n + 1-dimensional symmetric
open intervals which covers L(−v) such that the centers are in L(−v) and such that
each is a subset of some member of Λ. Let r be one-half of the smallest edge length
among the intervals. Then r ∈ A. Let c = supA. Again we observe that L(c)
is compact and, as with the argument used with L(−v), there is an r such that
−v < r < c and such that some finite collection of elements of Λ covers

⋃

r≤y≤c L(y).
Moreover, some finite subset of Λ covers

⋃

y≤r L(y) so c ∈ A. If c < v, then any
finite collection of elements of Λ which covers

⋃

y≤c L(y) also covers
⋃

y≤r L(y) for
some c < r < v, contradicting a property of supremum.

Theorem 5 (Heine-Borel). Every closed and bounded subset of Rn is compact.

Proof. Every closed and bounded subset of R is compact [4]. Suppose every
closed and bounded subset of Rn is compact. Then Sn(v) is a compact subset of
R

n for each positive real number v. From the last theorem, Sn+1(v) is a compact
subset of Rn+1 for each real number v. If K ⊂ R

n+1 is bounded, then K ⊂ Sn+1(v)
for some v. If K is also closed, then it is a closed subset of a compact set and is
therefore compact.
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Induction Proof of the Cauchy-Schwarz Inequality for Complex Numbers.

The inequality
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holds for all complex numbers z1, . . . , zn, w1, . . . , wn. Equality holds if and only if
zjwm = zmwj for 1 ≤ m < j ≤ n.

Proof. The proofs for the cases n = 1 and n = 2 are left to the reader.
Suppose n > 2 is an integer and that the statement holds for 1 ≤ j ≤ n. Then for
all sequences of complex numbers

z1, z2, . . . , zn, zn+1, w1, w2, . . . , wn, wn+1,

it follows for 1 ≤ m < j ≤ n+ 1 that
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it follows from the above inequalities that

|zjwj + zmwm| =
√

|zj |2 + |zm|2
√

|wj |2 + |wm|2

and from the case for n = 2 that zjwm = zmwj .
If n > 2 and z1, z2, . . . , zn, w1, w2, . . . , wn, satisfy zmwk = zkwm for k 6= m,

then
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The Lagrange Identity (complex numbers). If z1, z2, . . . , zn, w1, w2, . . . , wn

are complex numbers then
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The Cauchy-Schwarz Inequality for inner-product spaces is usually established
by considering the sign of a special quadratic polynomial, “a clever trick that is not
easy to motivate” [1]. The foundation for an interesting and easily motivated proof
of the inequality for inner-product spaces may be found in [5] and derives from
an equation that may be viewed as a generalization of the Lagrange Identity. The
generalization of this identity itself derives from a generalization of the Pythagorean
Theorem. If ~x, ~y are vectors in an inner-product space, represent the inner-product

of ~x and ~y by ~x · ~y and the norm of ~x by ‖~x‖. Then ~x ⊥ ~y if and only if ‖~x+ ~y‖2 =
‖~x‖2 + ‖~y‖2. It is easy to see that for ~x, ~y

(‖~y‖2~x− (~x · ~y)~y) ⊥ (~x · ~y)~y

and that
(‖~y‖2~x− (~x · ~y)~y) + (~x · ~y)~y = ‖~y‖2~x.

Hence,

∥
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