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ON SECOND ORDER INTEGRODIFFERENTIAL INCLUSIONS

IN BANACH SPACES

Mouffak Benchohra

Abstract. In this paper we investigate the existence of mild solutions on the
semi-infinite interval to second order initial value problems for a class of integrod-
ifferential inclusions in Banach spaces. We shall make use of a theorem of Ma,
which is an extension to multivalued maps on locally convex topological spaces of
Schaefer’s Theorem.

1. Introduction. In the past few years several papers have been devoted to
the study of the existence of mild solutions for differential equations in abstract
spaces. We refer to the books of Barbu [3], Goldstein [9], Heikkila and Laksh-
mikantham [10], Ladas and Lakshmikantham [13], Lakshmikantham and Leela [14],
and Zaidman [24], and to the papers of Fattorini [6, 7], Heikkila and Lakshmikan-
tham [11], Kusano and Oharu [12], Lakshmikantham and Leela [14], Martin [18]
and Travis and Webb [21, 22]. However, very few results are available for evo-
lution inclusions on compact intervals, see Avgerinov and Papageorgiou [2] and
Papageorgiou [19].

In [4] Benchohra gives an existence theorem for mild solutions on unbounded
intervals for a class of first order multivalued problems.

In this paper we shall prove a theorem which assures the existence of mild
solutions defined on an unbounded real interval J for the initial value problem
(IVP for short) of the second order integrodifferential inclusion

y′′ −Ay ∈

∫ t

0

K(t, s)F (s, y) ds, t ∈ J, y(0) = y0, y′(0) = y1 (1.1)

where F : J×E → E is a bounded, closed, convex valued multivalued map, K:D →
R, D = {(t, s) ∈ J×J : t ≥ s}, y0, y1 ∈ E, J an unbounded real interval, A a linear
operator from a dense subspace D(A) of E into E and E a real Banach space with
norm | · |. For the sake of simplicity, we choose J = [0,+∞).

The method we are going to use is to reduce the existence of solutions to (1.1)
to the search for fixed points of a suitable multivalued map on the Fréchet space
C(J,E). In order to prove the existence of fixed points, we shall rely on a theorem
due to Ma [17], which is an extension to multivalued maps between locally convex
topological spaces of Schaefer’s Theorem [20].
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2. Preliminaries. In this section, we introduce notations, definitions, and
preliminary facts from multivalued analysis which are used throughout this paper.
Jm is the compact real interval [0,m] (m ∈ N). C(J,E) is the linear metric Fréchet
space of continuous functions from J into E with the following metric [8]

d(y, z) =

∞
∑

m=0

2−m‖y − z‖m
1 + ‖y − z‖m

for each y, z ∈ C(J,E),

where
‖y‖m := sup{|y(t)| : t ∈ Jm}.

B(E) denotes the Banach space of bounded linear operators from E into E.
A measurable function y: J → E is Bochner integrable if and only if |y| is Lebesgue
integrable. For properties of the Bochner integral we refer to Yosida [23].
L1(J,E) denotes the Banach space of continuous functions y: J → E which are
Bochner integrable normed by

‖y‖L1 =

∫

∞

0

|y(t)| dt for all y ∈ L1(J,E).

Up denotes the neighborhood of 0 in C(J,E) defined by

Up := {y ∈ C(J,E) : ‖y‖m ≤ p for each m ∈ N}.

The convergence in C(J,E) is the uniform convergence on compact intervals, i.e.
yj → y in C(J,E) if and only if for each m ∈ N, ‖yj − y‖m → 0 in C(Jm, E) as
j → ∞. M ⊆ C(J,E) is a bounded set if and only if there exists a positive function
φ ∈ C(J,R+) such that

|y(t)| ≤ φ(t) for all t ∈ J and all y ∈M.

The Ascoli-Arzela theorem says that a set M ⊆ C(J,E) is compact if and only if
for each m ∈ N, M is a compact set in the Banach space (C(Jm, E), ‖ · ‖m).

We say that a family {C(t) : t ∈ R} of operators in B(E) is a strongly contin-
uous cosine family if

(i) C(0) = I (I is the identity operator in E),
(ii) C(t+ s) + C(t− s) = 2C(t)C(s) for all s, t ∈ R,
(iii) The map t 7→ C(t)y is strongly continuous for each y ∈ E.
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The strongly continuous sine family {S(t) : t ∈ R}, associated to the given
strongly continuous cosine family {C(t) : t ∈ R}, is defined by

S(t)y =

∫ t

0

C(s)y ds, y ∈ E, t ∈ R.

The infinitesimal generator A:E → E of a cosine family {C(t) : t ∈ R} is defined
by

Ay =
d2

dt2
C(0)y.

For more details on strongly continuous cosine and sine families, we refer the reader
to the book of Goldstein [9] and to the papers of Fattorini [6, 7] and Travis and
Webb [21, 22].

Let (X, ‖ · ‖) be a Banach space. A multivalued map G:X → X is convex
(closed) valued if G(x) is convex (closed) for all x ∈ X . G is bounded on bounded
sets if G(B) = ∪x∈BG(x) is bounded in X for any bounded set B of X (i.e.
supx∈B{sup{‖y‖ : y ∈ G(x)}} <∞).

G is called upper semicontinuous (u.s.c.) on X if for each x0 ∈ X the set G(x0)
is a nonempty, closed subset of X , and if for each open set B of X containing G(x0),
there exists an open neighborhood A of x0 such that G(A) ⊆ B.

G is said to be completely continuous if G(B) is relatively compact for every
bounded subset B ⊆ X .

If the multivalued map G is completely continuous with nonempty compact
values, then G is u.s.c. if and only if G has a closed graph (i.e. xn → x0, yn → y0,
yn ∈ Gxn imply y0 ∈ Gx0). G has a fixed point if there is x ∈ X such that x ∈ Gx.

In the following, BCC(X) denotes the set of all nonempty bounded, closed
and convex subsets of X .

A multivalued map G: J → BCC(E) is said to be measurable if for each x ∈ E

the distance between x and G(t) is a measurable function on J . For more details
on multivalued maps see Aubin and Frankowska [1] and Deimling [5].

Let us list the following hypotheses:

(H1) A is an infinitesimal generator of a given strongly continuous and bounded
cosine family {C(t) : t ∈ J};

(H2) F : J × E → BCC(E); (t, y) 7→ F (t, y) is strongly measurable with respect to
t for each y → E, u.s.c. with respect to y for each t ∈ J and for each fixed
y ∈ C(J,E) the set

SF,y = {g ∈ L1(J,E) : g(t) ∈ F (t, y(t)) for a.e. t ∈ J}
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is nonempty;
(H3) For each t ∈ Jm (m ∈ {1, 2, . . .}), K(t, s) is measurable on [0, t] and

K(t) = ess sup{|K(t, s)| , 0 ≤ s ≤ t},

is bounded on Jm;
(H4) The map t 7→ Kt is continuous from Jm to L∞(Jm,R); here Kt(s) = K(t, s);
(H5) ‖F (t, y)‖ := sup{|v| ∈ F (t, y)} ≤ p(t)ψ(|y|) for almost all t ∈ J and all y ∈ E,

where p ∈ L1(J,R+) and ψ:R+ → (0,∞) is continuous and increasing with

Mm sup
t∈Jm

K(t)

∫ m

0

p(s) ds <

∫

∞

0

du

ψ(u)
for each m ∈ N;

where c =M |y0|+Mm|y1| and M = sup{‖C(t)‖; t ∈ J};
(H6) For each neighborhood Up of 0, y ∈ Up and t ∈ J the set

{

C(t)y0 + S(t)y1 +

∫ t

0

S(t− s)

∫ s

0

K(s, u)g(u) du ds : g ∈ SF,y

}

is relatively compact.

Remark 2.1. If dimE < ∞ and J is a compact real interval, then for each
y ∈ C(J,E) SF,y 6= ∅ (see Lasota and Opial [16]).

Definition 2.1. A continuous solution y(t) of the integral inclusion

y(t) ∈ C(t)y0 + S(t)y1 +

∫ t

0

S(t− s)

∫ s

0

K(s, u)F (u, y(u)) du ds

is called a mild solution on J of (1.1).

The following lemmas are crucial in the proof of our main theorem.

Lemma 2.1. [16] Let I be a compact real interval andX be a Banach space. Let
F be a multivalued map satisfying (H2) and let Γ be a linear continuous mapping
from L1(I,X) to C(I,X), then the operator

Γ ◦ SF :C(I,X) → BCC(C(I,X)), y 7→ (Γ ◦ SF )(y) := Γ(SF,y)
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is a closed graph operator in C(I,X)× C(I,X).

Lemma 2.2. [17] Let X be a locally convex space and N :X → X be a compact
convex valued, u.s.c. multivalued map such that there exists a closed neighborhood
Up of 0 for which N(Up), p ∈ N is a relatively compact set. If the set

Ω := {y ∈ X : λy ∈ N(y) for some λ > 1}

is bounded, then N has a fixed point.

3. Main Result. Now, we are able to state and prove our main theorem.

Theorem 3.1. Assume that (H1) through (H6) hold. Then the IVP (1.1) has
at least one mild solution on J .

Proof. We transform the problem into a fixed point problem. Consider the
multivalued map, N :C(J,E) → C(J,E) defined by

Ny :=

{

h ∈ C(J,E) : h(t) = C(t)y0 + S(t)y1

+

∫ t

0

S(t− s)

∫ s

0

K(s, u)g(u) du ds : g ∈ SF,y

}

where

SF,y =

{

g ∈ L1(J,E) : g(t) ∈ F (t, y(t)) for a.e. t ∈ J

}

.

It is clear that the fixed points of N are mild solutions to (1.1). We shall show that
N satisfies the assumptions of Lemma 2.2. The proof will be given in three steps.

Step 1. Clearly, (H2) shows that Ny is convex for each y ∈ C(J,E). By (H3)
through (H5), N(Uq) is bounded and equicontinuous for each q ∈ N.

As a consequence of Step 1 and (H6) together with the Ascoli-Arzela theorem
we can conclude that N(Up) is relatively compact in C(J,E).

Step 2. N has a closed graph. Let yn → y∗, hn ∈ Nyn, and hn → h0. We shall
prove that h0 ∈ Ny∗. hn ∈ N(yn) means that there exists gn ∈ SF,yn

such that

ht(t) = C(t)y0 + S(t)y1 +

∫ t

0

S(t− s)

∫ s

0

K(s, u)gn(u) du ds.
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We must prove that there exists g0 ∈ SF,y∗
such that

h0(t) = C(t)y0 + S(t)y1 +

∫ t

0

S(t− s)

∫ s

0

K(s, u)g0(u) du ds. (3.1)

The idea is then to use the facts that

(i) hn → h0;
(ii) hn − C(t)y0 − S(t)y1 ∈ Γ(SF,yn

) where

Γ:L1(J,E) → C(J,E) defined by (Γg)(t) :=

∫ t

0

S(t−s)

∫ s

0

K(s, u)g(u) du ds.

If Γ◦SF is a closed graph operator, we would be done. But we do not know whether
Γ◦SF is a closed graph operator. So, we cut the functions yn, hn−C(t)y0−S(t)y1,
gn and we consider them defined on the interval [k, k + 1] for any k ∈ N. Then,
using Lemma 2.1, in this case we are able to affirm that (3.1) is true on the compact
interval [k, k + 1], i.e.

h0(t)

∣

∣

∣

∣

[k,k+1]

= C(t)y0 + S(t)y1 +

∫ t

0

S(t− s)

∫ s

0

K(s, u)gk0(u) du ds

for suitable L1-selection gk0 of F (t, y∗(t)) on the interval [k, k+1]. At this point we
can paste the functions gk0 obtaining the selection g0 defined by

g0(t) = gk0 (t) for t ∈ [k, k + 1).

We obtain then that g0 is an L1-selection and (3.1) will be satisfied. We now give
the details.
Clearly we have that

‖(hn − C(t)y0 − S(t)y1)− (h0 − C(t)y0 − S(t)y1‖∞ → 0, as n→ ∞.

Now, we consider for all k ∈ N, the mapping

Sk
F :C([k, k + 1], E) → L1([k, k + 1], E)

u 7→ Sk
F,u := {f ∈ L1([k, k + 1], E) : f(t) ∈ F (t, u(t)) for a.e. t ∈ [k, k + 1]}.
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Also, we consider the linear continuous operators

Γk:L
1([k, k + 1], E) → C([k, k + 1], E)

g 7→Γk(g)(t) =

∫ t

0

S(t− s)

∫ s

0

K(s, u)g(u) du ds.

From Lemma 2.1, it follows that Γk ◦ Sk
F is a closed graph operator for all k ∈ N.

Moreover, we have that

(

hn(t)− C(t)y0 − S(t)y1
)

∣

∣

∣

∣

[k,k+1]

∈ Γk(S
k
F,yn

).

Since yn → y∗, it follows from Lemma 2.1 that

(

h0(t)− C(t)y0 − S(t)y1
)

∣

∣

∣

∣

[k,k+1]

=

∫ t

0

S(t− s)

∫ s

0

K(s, u)gk0 du ds

for some gk0 ∈ Sk
F,y∗

. So the function g0 defined on J by

g0(t) = gk0 (t) for t ∈ [k, k + 1)

is in SF,y∗
since g0(t) ∈ F (t, y∗(t)) for a.e. t ∈ J .

Step 3. Now it remains to show that the set Ω is bounded.
Let y ∈ Ω. Then λy ∈ N(y) for some λ > 1. Thus, there exists g ∈ SF,y such

that

y(t) = λ−1C(t)y0 + λ−1S(t)y1 + λ−1

∫ t

0

S(t− s)

∫ s

0

K(s, u)g(u) du ds, t ∈ J.
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This implies by (H3) through (H5) that for each t ∈ Jm we have

|y(t)| ≤M |y0|+Mm|y1|+M

∥

∥

∥

∥

∫ t

0

∫ s

0

K(s, u)g(u) du ds

∥

∥

∥

∥

≤M |y0|+Mm|y1|+M

∫ t

0

∫ s

0

|K(s, u)|p(u)ψ(|y(u)|) du ds

≤M |y0|Mm|y1|+Mm sup
t∈Jm

K(t)

∫ t

0

p(s)ψ(|y(s)|) ds.

Let us take the right-hand side of the above inequality as v(t), then we have

v(0) =M |y0|+Mm|y1| and |y(t)| ≤ v(t).

Using the increasing character of ψ we get

v′(t) ≤Mm sup
t∈Jm

K(t)p(t)ψ(v(t)).

This implies for each t ∈ Jm that

∫ v(t)

v(0)

du

ψ(u)
≤Mm sup

t∈Jm

K(t)

∫ m

0

p(s) ds <

∫

∞

v(0)

du

ψ(u)
.

This inequality implies that there exists a constant b such that v(t) ≤ b, t ∈ Jm,
and hence, ‖y‖∞ ≤ b where b depends on m and on the functions p and ψ. This
shows that Ω is bounded. Set X := C(J,E). As a consequence of Lemma 2.2 we
deduce that N has a fixed point which is a mild solution of (1.1).
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