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RETURNS TO THE ORIGIN FOR RANDOM WALKS ON Z

Loucas A. Chrysafi and R. E. Bradley

Abstract. We present a combinatorial theorem which generalizes an identity

of Feller and applies it to the study of returns to the origin for the symmetric

random walk on Z.

1. Introduction. An ambidextrous mathematician with a sore throat has a

long day of lecturing ahead of her. She puts n throat lozenges into her left pocket

and another n into her right pocket. When her throat feels irritated, she chooses

a pocket at random and takes a lozenge from it. We assume that she is not aware

of taking the last lozenge from a pocket and only notices that the pocket is empty

when she next tries, unsuccessfully, to take a lozenge from it.

When she first realizes that one pocket is empty, how many lozenges remain

in the other pocket? The answer is clearly a random variable with a range r =

0, 1, . . . , n. In order to have precisely r of them in her right pocket when she finds

that the left pocket is empty, she must have previously made 2n − r selections,

exactly n of which were from the left pocket. This is a binomial probability and,

assuming equal likelihood of choosing left and right, the quantity is

(

2n− r

n

)

1

22n−r
. (1)

Of course, we must multiply the quantity (1) by 1/2 to account for the event of

choosing the left pocket in order to discover the empty state, but this is cancelled

by the symmetric case when the right pocket is the first to be emptied.

This problem appears to originate with Feller [4] where it is called the problem

of Banach’s matchboxes, inspired by an address made by H. Steinhaus in honor of

Banach, wherein the latter’s smoking habits were mentioned. Mathematically, our

presentation is nearly identical; the social setting is perhaps more appropriate for

our times.

There is a connection between the lozenge problem and the random walk;

indeed, the reader may already have observed that the case r = 0 in (1) is precisely

the probability of having returned to the origin at the end of a 2n-step symmetric

random walk (SRW) in one dimension, a quantity which appears in an elementary



VOLUME 14, NUMBER 2, SPRING 2002 97

proof of Polya’s Theorem for one dimension; for example, Section 8 of Billingsley

[1].

What is less obvious is that the same quantity is the probability that the

walker does not return to the origin at all during the same 2n-step SRW. In fact,

the quantity (1) is the probability that a 2n-step SRW returns to the origin exactly

r times during the walk. This will be discussed in Section 3.

In this paper, we are primarily concerned with the random variable R, whose

distribution is given by the formula (1). In an exercise in Feller [4], the reader is

asked to find the expected value of such a random variable. As a hint, Feller asks

the reader to use a relation involving the quantity (1). That relation is the special

case, k = 1, of our Theorem 2.3.

In Section 2 of this paper, we prove this generalization of Feller’s identity,

which is a purely combinatorial result making no reference to random walks, throat

lozenges, or smoking. In Section 3 we apply the result to the calculation of the

mean and variance of R. Using a simple combinatorial argument we also prove

the fact that the expected value of R is a sum of transition probabilities. The

machinery of Section 2 allows us to calculate any moment of R, and the third,

fourth, fifth, and sixth moments are presented without proof. In the final section,

we make a conjecture about the asymptotic behavior of the moments of R as n

tends to infinity.

2. The Main Theorem.

Definition. Suppose n and r are non-negative integers. If 0 ≤ r ≤ n, let

Pn,r =

(

2n− r

n

)

2r−2n. (2)

For r > n we define Pn,r = 0.

Lemma 2.1. If n ≥ 1 then

Pn,0 = Pn,1 =
1

22n

(

2n

n

)

.
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Proof. When r = 0, this follows from the definition. For r = 1, we observe

that

(

2n

n

)

= 2

(

2n− 1

n

)

.

Definition. Given a real number x and an integer k > 0, define the falling

factorial of x as follows [x]k = x(x − 1) · · · (x − k + 1). We adopt the convention

that [x]0 = 1.

Definition. Given non-negative integers n and k with k ≥ 1, let

Fn,k(λ) =

k
∏

i=1

(2n+ i− λ).

Lemma 2.2.

Fn,k+1(λ+ 1) = (2n− λ)Fn,k(λ).

The proof is the result of factoring out the first term and re-indexing.

Theorem 2.3. Suppose n and r are nonnegative integers with 0 ≤ r ≤ n. Then

for any k ≥ 1

[n− r]kPn,r = 2−kFn,k(r + k)Pn,r+k. (3)

Proof. We proceed by induction. If k = 1, the right hand side of (3) is

2−1[(2n+ 1)− (r + 1)]Pn,r+1 = 2−1+(r+1)−2n(2n− r)

(

2n− (r + 1)

n

)

= 2r−2n(2n− r)
(2n− r − 1)!

n!(n− r − 1)!

= (n− r)2r−2n (2n− r)!

n!(n− r)!

= [n− r]1Pn,r.
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Now suppose that equation (3) holds for k. We wish to show that

[n− r]k+1Pn,r = 2−k−1Fn,k+1(r + k + 1)Pn,r+k+1. (4)

We first observe that

(n− r − k)

(

2n− (r + k)

n

)

= (2n− r − k)

(

2n− (r + k + 1)

n

)

.

Furthermore,

(2n− r − k)Fn,k(r + k) = (2n− r − k)

[

k
∏

i=1

(2n+ i)− (r + k)

]

= (2n− r − k)

[

k+1
∏

i=2

(2n+ i)− (r + k + 1)

]

= Fn,k+1(r + k + 1).

Combining this with Lemma 2.2, we have

(n− r − k)Fn,k(r + k)Pn,r+k = 2(r+k)−2nFn,k(r + k)(n− r − k)

(

2n− (r + k)

n

)

= 2−12(r+k+1)−2nFn,k+1(r + k + 1)

(

2n− (r + k + 1)

n

)

= 2−1Fn,k+1(r + k + 1)Pn,r+k+1.

We complete the argument by applying the inductive hypothesis to the left hand

side of (4).

[n− r]k+1Pn,r = (n− r − k)[n− r]kPn,r

= 2−k(n− r − k)Fn,k(r + k)Pn,r+k

= 2−k−1Fn,k+1(r + k + 1)Pn,r+k+1,
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as desired.

3. Expected Number of Returns and Other Moments. Consider the

symmetric random walk (SRW) on Z. The usual definition is as follows: Let

X1, X2, X3, . . . be independent, identically distributed random variables each tak-

ing the values +1 and −1 with probability 1/2. Let S0 = 0 and define Sk for k ≥ 1

inductively by Sk = Sk−1 + Xk. By an N -step symmetric random walk we mean

the ordered (N +1)-tuple 〈S0, S1, . . . , SN 〉. By a symmetric random walk we mean

the infinite tuple 〈S0, S1, . . . 〉.

Polya’s Theorem guarantees that with probability 1, we have Sk = 0 infinitely

often in a SRW. Since this can only occur for even values of k, we are interested in

the random variable R which counts the number of returns to the origin in a simple

random walk of length 2n; that is, the number of indices k, 1 ≤ k ≤ 2n for which

Sk = 0.

Theorem 3.1. Let R denote the number of returns to the origin in a 2n-step

SRW. Then

P [R = r] = Pn,r.

In particular,

n
∑

r=0

Pn,r = 1.

Proof. The proof is given in the second edition of Feller, Volume 1 [3] in an op-

tional section on pages 81–83. In the third and final edition of Feller’s masterpiece,

it is relegated to the exercises at the end of chapter III.

Theorem 3.2. Let R be defined as in Theorem 3.1. Then the mean µn and

variance σ2 of R are as follows:

µn = E[R] = (2n+ 1)

(

2n

n

)

2−2n − 1 (5)

E[R2] = 2n− 3µn (6)

and σ2 = 2n− µn(3 + µn). (7)
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Proof. Let k = 1 in Theorem 2.3. Then we have

(n− r)Pn,r =
1

2
[(2n+ 1)− (r + 1)]Pn,r+1

=
2n+ 1

2
Pn,r+1 −

r + 1

2
Pn,r+1.

Summing both sides, we have

n

n
∑

r=0

Pn,r −

n
∑

r=0

rPn,r =
2n+ 1

2

n
∑

r=0

Pn,r+1 −
1

2

n
∑

r=0

(r + 1)Pn,r+1.

Since
∑n

r=0 Pn,r = 1 we have

n
∑

r=0

rPn,r = n−
2n+ 1

2
[1− Pn,0 + Pn,n+1] +

1

2

[

n
∑

r=0

rPn,r + (n+ 1)Pn,n+1

]

.

Since Pn,n+1 = 0, we may solve this to obtain

2

n
∑

r=0

rPn,r = 2n− (2n+ 1) [1− Pn,0] +

n
∑

r=0

rPn,r .

Thus,

n
∑

r=0

rPn,r = 2n− (2n+ 1) [1− Pn,0]

= (2n+ 1)Pn,0 − 1.

Therefore, by Lemma 2.1

µn = (2n+ 1)

(

2n

n

)

2−2n − 1
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as desired.

For the variance, we consider the case k = 2 in Theorem 2.3.

(n− r)(n − r − 1)Pn,r =
1

4
([(2n+ 1)− (r + 2)] · [(2n+ 2)− (r + 2)])Pn,r+2

4(n2 − 2nr − n+ r2 + r)Pn,r

=
[

(2n+ 1)(2n+ 2)− (4n+ 3)(r + 2) + (r + 2)2
]

Pn,r+2.

Summing both sides, we have

4n2
n
∑

r=0

Pn,r − 8n

n
∑

r=0

rPn,r − 4n

n
∑

r=0

Pn,r + 4

n
∑

r=0

r2Pn,r + 4

n
∑

r=0

rPn,r

= (2n+ 1)(2n+ 2)

n
∑

r=0

Pn,r+2 − (4n+ 3)

n
∑

r=0

(r + 2)Pn,r+2 +

n
∑

r=0

(r + 2)2Pn,r+2.

Simplifying, we have

4n2 − 8nµn − 4n+ 4E[R2] + 4µn = (2n+ 1)(2n+ 2) [1− Pn,0 − Pn,1]

− (4n+ 3) [µn − Pn,1] + E[R2]− Pn,1.

By Lemma 2.1, Pn,0 = Pn,1, so we may solve in the following way.

3E[R2] = 4n+ 8nµn − 4µn + 6n+ 2− 2(4n2 + 6n+ 2)Pn,0

− (4n+ 3)µn + (4n+ 3)Pn,0 − Pn,0

= 6n+ 9− 9Pn,0[2n+ 1].

Using the formula for µn, we have,

E[R2] = 2n+ 3− 3(µn + 1) = 2n− 3µn.
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Hence,

σ2 = E[R2]− µ2
n = 2n− µn(3 + µn),

as desired.

Using Theorem 2.3 for larger values of k and the techniques employed in the

proof of Theorem 3.2 we may compute, at least in principle, any of the moments

of R. We quote some of them in the following theorem.

Theorem 3.3. Let R be defined as in Theorem 3.1. Then

E[R3] = µn(4n+ 13)− 8n

E[R4] = 12n2 + 46n− 5µn(8n+ 15)

E[R5] = µn(32n
2 + 388n+ 541)− 148n2 − 332n

E[R6] = 120n3 + 1728n2 + 2874n− 7µn(96n
2 + 584n+ 669).

The derivation for the third and fourth moment is given in [2] pages 18–27. The

calculations are long but rely entirely on elementary methods. We leave the proof

of the fifth and sixth moment to the interested and patient reader.

The general theory of Markov processes implies that the expected number

of returns to the origin for any random walk is a sum of transition probabilities;

specifically
∑

P [S2k = 0]

where k ranges from 1 to n in the case of a finite walk and over all positive integers

in an infinite walk. This is the key to a modern proof of Polya’s Theorem as in [1].

In the case of the 2n-step SRW, we can give a combinatorial proof of this fact. We

first observe that

P [S2k = 0] =

(

2k

k

)

2−2k

since a walker returns to the origin after 2k steps by choosing precisely k steps to

the right and k steps to the left. Thus,

P [S2k = 0] = Pk,0
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by the definition of Pn,r. We shall show that

µn =

n
∑

k=1

Pk,0,

but first we need the following lemma.

Lemma 3.4. Let µn be defined as in Theorem 3.2. If n ≥ 1 then

µn = µn−1 + Pn,0.

Proof. By Theorem 3.2

µn−1 = (2n− 1)

(

2n− 2

n− 1

)

22−2n − 1

= 4(2n− 1)
(2n− 2)!

(n− 1)!(n− 1)!
2−2n − 1

= 4(2n− 1)
n2(2n)!2−2n

2n(2n− 1)(n!)2
− 1

=
2n(2n)!

(n!)2
2−2n − 1

= 2nPn,0 − 1 = µn − Pn,0.

Therefore,

µn = µn−1 + Pn,0

as desired.

Theorem 3.5. If n ≥ 1 then

µn =
n
∑

k=1

Pk,0.
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Proof. By repeated applications of Lemma 3.4 we get

µn = µn−1 + Pn,0

= µn−2 + Pn−1,0 + Pn,0

= µn−3 + Pn−2,0 + Pn−1,0 + Pn,0

= · · · = µ0 +
n
∑

k=1

Pk,0.

But µ0 = 0, therefore,

µn =

n
∑

k=1

Pk,0.

4. Asymptotic Results.

Proposition 4.

(

2n

n

)

2−2n ∼ (πn)−
1

2 . (8)

Proof. Using Stirling’s formula

n! ∼ (2πn)
1

2nne−n

we have

(

2n

n

)

2−2n ∼

[

(2π)
1

2 (2n)2n+
1

2 e−2n

2πn2n+1e−2n

]

2−2n

∼ (2π)−
1

2n−

1

2 2
1

2 = (πn)−
1

2

as desired.
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Relation (8), combined with the results of Section 3, implies that

E[Rk] ∼ cn
k

2

for k = 1, 2, . . .6, where c depends only on the power k.

It is clear from the details of Theorem 3.3 that the methods employed for

calculating E[Rk] can be extended for any value of k, giving a polynomial in n with

coefficients that are either integers or integral multiples of µn. More precisely, that

E[R2k−1] = µn(ak−1n
k−1 + · · ·+ a0)− (bk−1n

k−1 + · · ·+ b1n) k = 1, 2, 3, . . .

and

E[R2k] = (αkn
k + · · ·+ α1n)− µn(βk−1n

k−1 + · · ·+ β0) k = 1, 2, 3, . . .

where ak′s, bk′s, αk′s and βk′s are positive integers.

A proof of this conjecture remains elusive, as does a closed form for the coeffi-

cients. Nevertheless, the details of the construction give one a degree of confidence

in asserting the conjecture that

E[Rk] ∼ ckn
k

2

for all positive integers k.
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