USING WHALES TO COMPLETE A BOOLEAN ALGEBRA

Jason Holland

In this paper, \mathbb{B} will denote an arbitrary Boolean algebra. We use certain "large" subsets of \mathbb{B}, known as whales, to construct an Archimedean Riesz space, also known as a vector lattice, which contains a natural, complete Boolean algebra. The latter Boolean algebra, known as the Boolean algebra of bands, will be used as the target for the completion of \mathbb{B}. In our concluding remarks, we make a connection between the completion of \mathbb{B} and Stone's Representation Theorem. It is known that every Boolean algebra has a completion. Moreover, a Boolean algebra is complete if and only if it is isomorphic to the regular open algebra of some topological space [2].

Whales were introduced in [1] and employed to give a short proof of the universal completion of an Archimedean Riesz space. We adapt the techniques in [1] to the setting of Boolean algebras and give a simple, constructive proof that any Boolean algebra can be represented as a dense subalgebra of the Boolean algebra of all bands of an Archimedean Riesz space. For an excellent text on elementary Riesz space theory, we refer the reader to [5].

In what follows, we denote the partial order of \mathbb{B} by \leq, the largest element by $\mathbf{1}$, and the smallest element by $\mathbf{0}$. If for every subset D of \mathbb{B}, the least upper bound and the greatest lower bound of D exist, then \mathbb{B} is complete. A completion of \mathbb{B} is a complete Boolean algebra having \mathbb{B} as a dense subalgebra. If $B \in \mathbb{B}$, then B^{\prime} will denote the complement of B. A subset \mathcal{A} of a Boolean algebra \mathbb{B} is called a whale if

1. For every $A \in \mathcal{A}$ and every $B \in \mathbb{B}$ with $B \leq A$, we have $B \in \mathcal{A}$, and
2. $\sup \{A: A \in \mathcal{A}\}=\mathbf{1}$.

It is easy to see that any union of whales is a whale. Also, if \mathcal{A} and \mathcal{B} are whales, then the set $\mathcal{A} \wedge \mathcal{B}:=\{A \wedge B: A \in \mathcal{A}, B \in \mathcal{B}\}$ is a whale.

1. Constructing a Riesz Space. Associated to each whale \mathcal{A}, we define

$$
\mathbb{R}_{\mathcal{A}}:=\{f: \mathcal{A} \rightarrow \mathbb{R} \text { such that } f(\mathbf{0})=0 \text { and } f(B)=f(A)
$$

$$
\text { whenever } B \leq A, B \neq \mathbf{0}\}
$$

Under the usual pointwise addition and order, each $\mathbb{R}_{\mathcal{A}}$ is a Dedekind complete Riesz space. If $f \in \mathbb{R}_{\mathcal{A}}$, we write $\operatorname{dom} f$ for \mathcal{A}. Define a binary relation on $\bigcup\left\{\mathbb{R}_{\mathcal{A}}: \mathcal{A}\right.$ is a whale $\}$ by

$$
f \sim g:=\{f(A)=g(A) \text { for all } A \in \operatorname{dom} f \wedge \operatorname{dom} g\} .
$$

To see that \sim is indeed an equivalence relation, suppose that $f \sim g$ and $g \sim h$. Let $A \in \operatorname{dom} f \wedge \operatorname{dom} h$. Then for all $B \in \operatorname{dom} g$,

$$
f(A)=f(A \wedge B)=g(A \wedge B)=h(A \wedge B)=h(A)
$$

That \sim is reflexive and symmetric is obvious. We state the most important fact about \sim in the next lemma. For a proof of Lemma 2, see [1].

Lemma 1. Each equivalence class contains a unique element with maximal domain.

If $f \in \cup\left\{\mathbb{R}_{\mathcal{A}}: \mathcal{A}\right.$ is a whale $\}$, then we denote the equivalence class of f by $[f]$ and the unique element of $[f]$ with maximal domain by \bar{f}. We then denote the set of all elements with maximal domains by $E(\mathbb{B})$. If $\bar{f}, \bar{g} \in E(\mathbb{B})$, then one can find an \bar{h} for which $\bar{h}=\bar{f}+\bar{g}$ as follows. Define an element $h \in \mathbb{R}_{\operatorname{dom}} \bar{f} \wedge \operatorname{dom} \bar{g}$ by $h(A)=\bar{f}(A)+\bar{g}(A)(A \in \operatorname{dom} \bar{f} \wedge \operatorname{dom} \bar{g})$. By Lemma $2, \bar{h}$ exists and is unique. One routinely proves that $E(\mathbb{B})$ with this addition and the obvious scalar multiplication is a real vector space. We equip $E(\mathbb{B})$ with an order relation given by $f \leq g$ if $f(A) \leq g(A)$ for all $A \in \operatorname{dom} f \wedge \operatorname{dom} g$. This order relation enables us to prove the following theorem.

Theorem 2. $E(\mathbb{B})$ is an Archimedean Riesz space.
Proof. Lemma 1 guarantees that the order defined above is indeed a partial order. For example, if $\bar{f} \leq \bar{g}$ and $\bar{g} \leq \bar{f}$, then $\bar{f} \sim \bar{g}$. It follows then by Lemma

2 that $\bar{f}=\bar{g}$. We prove that the supremum of any two elements in $E(\mathbb{B})$ exists and leave the rest of the details to the reader. Let $\bar{f}, \bar{g} \in E(\mathbb{B})$. Define an element $h \in \mathbb{R}_{\text {dom } \bar{f} \wedge \operatorname{dom} \bar{g}}$ by

$$
h(A)=\max \{\bar{f}(A), \bar{g}(A) \quad(A \in \operatorname{dom} \bar{f} \wedge \operatorname{dom} \bar{g})\}
$$

By Lemma 1, we obtain $\bar{h} \in E(\mathbb{B})$. Since $\bar{h} \sim h$ and $\operatorname{dom} h \subset \operatorname{dom} \bar{h}$, it follows that $\bar{h} \geq \bar{f}$ and $\bar{h} \geq \bar{g}$. Suppose that $\bar{y} \geq \bar{f}, \bar{y} \geq \bar{g}$, and $A \in \operatorname{dom} \bar{y} \wedge \operatorname{dom} \bar{h}$ such that $A \neq \mathbf{0}$. Then

$$
\bar{y}(A)=\bar{y}(A \wedge B) \geq \bar{h}(A \wedge B)=\bar{h}(A)
$$

Therefore, $\bar{h}=\bar{f} \vee \bar{g}$.
2. Characteristic Functions. Every $B \in \mathbb{B}$ gives rise to a whale $\mathcal{A}_{B}=$ $\{A \leq B\} \cup\left\{A \leq B^{\prime}\right\}$. Define a function $\chi_{B} \in \mathbb{R}_{\mathcal{A}_{B}}$ by

$$
\chi_{B}(A):=\left\{1 \text { if } A \leq B, \quad 0 \text { if } A \leq B^{\prime}\right\}
$$

It is easy to see that χ_{B} is an element with maximal domain and thus a member of $E(\mathbb{B})$. We write $B[E(\mathbb{B})]$ for the Boolean algebra of all bands of $E(\mathbb{B})$. If $f \in E(\mathbb{B})$, then f^{\prime} is the band given by $\{g \in E(\mathbb{B}):|g| \wedge|f|=0\}$. The characteristic functions give us a natural way to define a map between the Boolean algebras \mathbb{B} and $B[E(\mathbb{B})]$. We summarize the important properties of that map in Theorem 4. Before proving Theorem 4, we need the following lemma.

Lemma 3. Let B and C be elements of \mathbb{B}. Then $\left(\chi_{B}\right)^{\prime \prime} \cap\left(\chi_{C}\right)^{\prime \prime}=\left(\chi_{B} \wedge \chi_{C}\right)^{\prime \prime}$.
Proof. Since $\chi_{B \wedge C}=\chi_{B} \wedge \chi_{C} \in\left(\chi_{B}\right)^{\prime \prime} \cap\left(\chi_{C}\right)^{\prime \prime}$, it follows that $\left(\chi_{B} \wedge \chi_{C}\right)^{\prime \prime} \subset$ $\left(\chi_{B}\right)^{\prime \prime} \cap\left(\chi_{C}\right)^{\prime \prime}$. For the other inclusion, let $f \in\left(\chi_{B}\right)^{\prime \prime} \cap\left(\chi_{C}\right)^{\prime \prime}$ and $g \in\left(\chi_{B} \wedge \chi_{C}\right)^{\prime}$. This implies that $g \in\left(\chi_{B}\right)^{\prime} \cap\left(\chi_{C}\right)^{\prime}$. Thus, $|f| \wedge|g|=0$ and $f \in\left(\chi_{B} \wedge \chi_{C}\right)^{\prime \prime}$. Hence, $\left(\chi_{B} \wedge \chi_{C}\right)^{\prime \prime}=\left(\chi_{B}\right)^{\prime \prime} \cap\left(\chi_{C}\right)^{\prime \prime}$.

Theorem 4. Let $\varphi: \mathbb{B} \rightarrow B[E(\mathbb{B})]$ be given by $B \mapsto\left(\chi_{B}\right)^{\prime \prime}$. Then φ is an injective Boolean homomorphism. Moreover, $\varphi(\mathbb{B})$ is a dense subalgebra of $B[E(\mathbb{B})]$.

Proof. Applying the identity $\left(\chi_{B^{\prime}}\right)^{\prime}=\left(\chi_{B}\right)^{\prime \prime}$, together with Lemma 3, we get that φ is a Boolean homomorphism. If $B \in \mathbb{B}$ and $B \neq \mathbf{0}$, then χ_{B} is a nonzero element of $\left(\chi_{B}\right)^{\prime \prime}$. Thus, φ is injective. For the density, let $D \neq\{0\}$ be an element of $B[E(\mathbb{B})]$ and let $0<f \in D$. There exists $A \in \operatorname{dom} f$ such that $f(A)=k>0$.

If $C \leq A$, then $k \cdot \chi_{A}(C)=k=f(C)$. If $C \leq A^{\prime}$, then $k \cdot \chi_{A}(C)=0 \leq f(C)$. It follows that $k \cdot \chi_{A} \leq f$ and

$$
\left(k \cdot \chi_{A}\right)^{\prime \prime}=\left(\chi_{A}\right)^{\prime \prime} \subset f^{\prime \prime} \subset D .
$$

The Boolean algebra $B[E(\mathbb{B})]$ is complete [3]. The latter fact, in conjuction with Theorem 4.19 in [2] and Theorem 4, yields the next result.

Theorem 5. The Boolean algebra $B[E(\mathbb{B})]$ is the completion of \mathbb{B}.
Since the completion of a Boolean algebra can be represented as the bands of an Archimedean Riesz space, the following corollary is immediate.

Corollary 6. Every Boolean algebra is isomorphic to a dense subalgebra of the Boolean algebra of all bands of an Archimedean Riesz space.
3. A Connection With Stone's Theorem. Perhaps the most important result regarding the representation of a Boolean algebra is the topological version of Stone's Representation Theorem. We state this as Theorem 7 below. For a proof see [2] or [4].

Theorem 7. [Stone's Representation Theorem]. Every Boolean algebra is isomorphic to the algebra of closed-open sets of a totally disconnnected, compact Hausdorff space.

The topological space mentioned in Theorem 7 is called the Stone space of the Boolean algebra. If a Boolean algebra is complete, then the corresponding Stone space is extremally disconnected [4]. It is straightforward, using the techniques in [1], to prove that $E(\mathbb{B})$ is a universally complete Riesz space. Applying the Ogasawara-Maeda representation theorem, $E(\mathbb{B})$ is of the form $C^{\infty}(X)$ for some compact, extremely disconnected Hausdorff space X. For a detailed account of this fact, see $[3]$. The Stone space of $B[E(\mathbb{B})]$ is precisely the topological space X. Thus, the Boolean algebra $B[E(\mathbb{B})]$ corresponds to the Boolean algebra of closed-open sets of X. The original Boolean algebra \mathbb{B} corresponds to a basis of closed-open sets of X.

References

1. G. Buskes and A. van Rooij, "Whales and the Universal Completion," Proceedings of the American Mathematical Society, 124 (1996), 423-427.
2. S. Koppelberg, Handbook of Boolean Algebras, Vol. I, North-Holland, Amsterdam - New York - Oxford - Tokyo, 1989.
3. W. A. Luxemburg and A. C. Zaanen, Riesz Spaces I, North Holland, Amsterdam, 1971.
4. R. Sikorski, Boolean Algebras, Springer-Verlag, New York, 1969.
5. A. C. Zaanen, Introduction to Operator Theory in Riesz Spaces, SpringerVerlag, Berlin - Heidelberg - New York, 1997.

Jason Holland
Department of Mathematics
P. O. Box 11000

Oklahoma Christian University
Oklahoma City, OK 73136-1100
email: jason.holland@oc.edu

