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USING WHALES TO COMPLETE A BOOLEAN ALGEBRA

Jason Holland

In this paper, B will denote an arbitrary Boolean algebra. We use certain

“large” subsets of B, known as whales, to construct an Archimedean Riesz space,

also known as a vector lattice, which contains a natural, complete Boolean algebra.

The latter Boolean algebra, known as the Boolean algebra of bands, will be used as

the target for the completion of B. In our concluding remarks, we make a connection

between the completion of B and Stone’s Representation Theorem. It is known that

every Boolean algebra has a completion. Moreover, a Boolean algebra is complete

if and only if it is isomorphic to the regular open algebra of some topological space

[2].

Whales were introduced in [1] and employed to give a short proof of the uni-

versal completion of an Archimedean Riesz space. We adapt the techniques in [1]

to the setting of Boolean algebras and give a simple, constructive proof that any

Boolean algebra can be represented as a dense subalgebra of the Boolean algebra

of all bands of an Archimedean Riesz space. For an excellent text on elementary

Riesz space theory, we refer the reader to [5].

In what follows, we denote the partial order of B by ≤, the largest element by

1, and the smallest element by 0. If for every subset D of B, the least upper bound

and the greatest lower bound of D exist, then B is complete. A completion of B is

a complete Boolean algebra having B as a dense subalgebra. If B ∈ B, then B′ will

denote the complement of B. A subset A of a Boolean algebra B is called a whale

if

1. For every A ∈ A and every B ∈ B with B ≤ A, we have B ∈ A, and

2. sup{A : A ∈ A} = 1.

It is easy to see that any union of whales is a whale. Also, if A and B are whales,

then the set A∧ B := {A ∧B : A ∈ A, B ∈ B} is a whale.
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1. Constructing a Riesz Space. Associated to each whale A, we define

RA :=

{

f : A → R such that f(0) = 0 and f(B) = f(A)

whenever B ≤ A, B 6= 0

}

.

Under the usual pointwise addition and order, each RA is a Dedekind complete

Riesz space. If f ∈ RA, we write dom f for A. Define a binary relation on
⋃

{RA : A is a whale} by

f ∼ g := {f(A) = g(A) for all A ∈ dom f ∧ dom g}.

To see that ∼ is indeed an equivalence relation, suppose that f ∼ g and g ∼ h. Let

A ∈ dom f ∧ dom h. Then for all B ∈ dom g,

f(A) = f(A ∧B) = g(A ∧B) = h(A ∧B) = h(A).

That ∼ is reflexive and symmetric is obvious. We state the most important fact

about ∼ in the next lemma. For a proof of Lemma 2, see [1].

Lemma 1. Each equivalence class contains a unique element with maximal

domain.

If f ∈ ∪{RA : A is a whale}, then we denote the equivalence class of f by

[f ] and the unique element of [f ] with maximal domain by f . We then denote the

set of all elements with maximal domains by E(B). If f, g ∈ E(B), then one can

find an h for which h = f + g as follows. Define an element h ∈ R
dom f∧dom g

by h(A) = f(A) + g(A) (A ∈ dom f ∧ dom g). By Lemma 2, h exists and is

unique. One routinely proves that E(B) with this addition and the obvious scalar

multiplication is a real vector space. We equip E(B) with an order relation given

by f ≤ g if f(A) ≤ g(A) for all A ∈ dom f ∧ dom g. This order relation enables us

to prove the following theorem.

Theorem 2. E(B) is an Archimedean Riesz space.

Proof. Lemma 1 guarantees that the order defined above is indeed a partial

order. For example, if f ≤ g and g ≤ f , then f ∼ g. It follows then by Lemma
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2 that f = g. We prove that the supremum of any two elements in E(B) exists

and leave the rest of the details to the reader. Let f, g ∈ E(B). Define an element

h ∈ R
dom f∧dom g

by

h(A) = max{f(A), g(A) (A ∈ dom f ∧ dom g)}.

By Lemma 1, we obtain h ∈ E(B). Since h ∼ h and dom h ⊂ dom h, it follows

that h ≥ f and h ≥ g. Suppose that y ≥ f , y ≥ g, and A ∈ dom y ∧ dom h such

that A 6= 0. Then

y(A) = y(A ∧B) ≥ h(A ∧B) = h(A).

Therefore, h = f ∨ g.

2. Characteristic Functions. Every B ∈ B gives rise to a whale AB =

{A ≤ B} ∪ {A ≤ B′}. Define a function χB ∈ RAB
by

χB(A) := {1 if A ≤ B, 0 if A ≤ B′}.

It is easy to see that χB is an element with maximal domain and thus a member of

E(B). We write B[E(B)] for the Boolean algebra of all bands of E(B). If f ∈ E(B),

then f ′ is the band given by {g ∈ E(B) : |g|∧ |f | = 0}. The characteristic functions

give us a natural way to define a map between the Boolean algebras B and B[E(B)].

We summarize the important properties of that map in Theorem 4. Before proving

Theorem 4, we need the following lemma.

Lemma 3. Let B and C be elements of B. Then (χB)
′′ ∩ (χC)

′′ = (χB ∧ χC)
′′.

Proof. Since χB∧C = χB ∧ χC ∈ (χB)
′′ ∩ (χC)

′′, it follows that (χB ∧ χC)
′′ ⊂

(χB)
′′ ∩ (χC)

′′. For the other inclusion, let f ∈ (χB)
′′ ∩ (χC)

′′ and g ∈ (χB ∧ χC)
′.

This implies that g ∈ (χB)
′∩ (χC)

′. Thus, |f |∧ |g| = 0 and f ∈ (χB ∧χC)
′′. Hence,

(χB ∧ χC)
′′ = (χB)

′′ ∩ (χC)
′′.

Theorem 4. Let ϕ:B → B[E(B)] be given by B 7→ (χB)
′′. Then ϕ is an

injective Boolean homomorphism. Moreover, ϕ(B) is a dense subalgebra ofB[E(B)].

Proof. Applying the identity (χB′)′ = (χB)
′′, together with Lemma 3, we get

that ϕ is a Boolean homomorphism. If B ∈ B and B 6= 0, then χB is a nonzero

element of (χB)
′′. Thus, ϕ is injective. For the density, let D 6= {0} be an element

of B[E(B)] and let 0 < f ∈ D. There exists A ∈ dom f such that f(A) = k > 0.
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If C ≤ A, then k · χA(C) = k = f(C). If C ≤ A′, then k · χA(C) = 0 ≤ f(C). It

follows that k · χA ≤ f and

(k · χA)
′′ = (χA)

′′ ⊂ f ′′ ⊂ D.

The Boolean algebra B[E(B)] is complete [3]. The latter fact, in conjuction

with Theorem 4.19 in [2] and Theorem 4, yields the next result.

Theorem 5. The Boolean algebra B[E(B)] is the completion of B.

Since the completion of a Boolean algebra can be represented as the bands of

an Archimedean Riesz space, the following corollary is immediate.

Corollary 6. Every Boolean algebra is isomorphic to a dense subalgebra of the

Boolean algebra of all bands of an Archimedean Riesz space.

3. A Connection With Stone’s Theorem. Perhaps the most important

result regarding the representation of a Boolean algebra is the topological version

of Stone’s Representation Theorem. We state this as Theorem 7 below. For a proof

see [2] or [4].

Theorem 7. [Stone’s Representation Theorem]. Every Boolean algebra is iso-

morphic to the algebra of closed-open sets of a totally disconnnected, compact

Hausdorff space.

The topological space mentioned in Theorem 7 is called the Stone space of the

Boolean algebra. If a Boolean algebra is complete, then the corresponding Stone

space is extremally disconnected [4]. It is straightforward, using the techniques

in [1], to prove that E(B) is a universally complete Riesz space. Applying the

Ogasawara-Maeda representation theorem, E(B) is of the form C∞(X) for some

compact, extremely disconnected Hausdorff space X . For a detailed account of this

fact, see [3]. The Stone space of B[E(B)] is precisely the topological space X . Thus,

the Boolean algebra B[E(B)] corresponds to the Boolean algebra of closed-open sets

of X . The original Boolean algebra B corresponds to a basis of closed-open sets of

X .
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