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ON THE RATIO OF DIRECTED LENGTHS IN THE TAXICAB
PLANE AND RELATED PROPERTIES

Münevver Özcan and Rüstem Kaya

Abstract. In this work, it is shown that a point of division divides a related
line segment in the same ratio both in the taxicab and Euclidean planes. Con-
sequently, the coordinates of the division point can be determined by the same
formula as in the Euclidean plane. In the latter parts of the paper, taxicab ana-
logues of Ceva’s and Menelaus’ Theorems and the theorem of directed lines are
given.

1. Introduction. A family of “metrics”, including the taxicab metric, have
been published by H. Minkowski [9] at the beginning of the last century. Later,
taxicab plane geometry was introduced in [8] and developed in [5] using the taxicab
metric in the coordinate plane by

dT (P1, P2) = |x1 − x2|+ |y1 − y2|

instead of the Euclidean metric

dE(P1, P2) =
√

(x1 − x2)2 + (y1 − y2)2

where P1 = (x1, y1) and P2 = (x2, y2).
A few problems related to the taxicab geometry have been studied and im-

proved by some authors, see [1, 2, 3, 4, 7, 10, 11, 12, 13, 14]. The taxicab geometry
was constructed by simply replacing the Euclidean distance function dE by the
taxicab distance function dT . Therefore it seems interesting to study the taxicab
analogues of the topics which include the concept of distance in Euclidean geom-
etry. These topics are division point, directed lengths, ratio of directed lengths,
Menelaus’ Theorem, Ceva’s Theorem, and the theorem of directed lines.

2. Directed Taxicab Length and Division Point. Let X and Y be any
two points on a directed straight line l. We define directed taxicab length of the line
segment XY as follows:

dT [XY ] =

{

dT (X,Y ), if XY and l have the same direction

−dT (X,Y ), if XY and l have opposite direction.
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Thus, dT [XY ] = −dT [Y X ]. Clearly, directed length in the Euclidean plane can be
defined in a similar way. That is

dE [XY ] =

{

dE(X,Y ), if XY and l have the same direction

−dE(X,Y ), if XY and l have opposite direction.

If A,B,C are points on a same directed line and C is between points A and B,
we denote this by ACB. If ACB, then C divides the line segment AB internally
and the ratio of the directed taxicab lengths is a positive real number, that is
dT [AC] /dT [CB] = λ > 0. If ABC or CAB then C divides the line segment AB
externally, and dT [AC] /dT [CB] = λ < 0, that is, the line segments AC and CB
have opposite directions. In both cases C is called the division point which divides
the line segment AB in ratio λ.
Clearly, C 6= B. C = A ⇔ λ = 0 and (C is at infinity ⇔ λ = −1).

Let C and C′ be two points such that C divides a given line segment AB
internally and C′ divides AB externally in the same proportion though with
opposite signs. Thus, the ratio of the directed lengths, dT [AC] /dT [CB] =
− dT [AC′] /dT [C′B] is the same positive number λ.

Theorem 1. Let P1 = (x1, y1) and P2 = (x2, y2) be any two distinct points in
the analytical plane. If Q = (x, y) is a point on the line passing through P1 and
P2, then

dT [P1Q] /dT [QP2] = dE [P1Q] /dE [QP2] .

That is, the ratios of the Euclidean and taxicab directed lengths are the same.

Proof. If Q = P1 then both ratios are equal to 0. If Q is at infinity then both
ratios are equal to −1. Therefore without loss of generality, let P1 6= Q 6= P2. It is
enough to show that

|x1 − x|+ |y1 − y|

|x− x2|+ |y − y2|
=

√

(x1 − x)2 + (y1 − y)2
√

(x− x2)2 + (y − y2)2
. (1)

Squaring both sides of Equation (1) one obtains

|x1 − x|2 + |y1 − y|2 + 2 |x1 − x| |y1 − y|

|x− x2|
2
+ |y − y2|

2
+ 2 |x− x2| |y − y2|

=
(x1 − x)2 + (y1 − y)2

(x− x2)2 + (y − y2)2
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which is equivalent to

[

(x − x2)
2 + (y − y2)

2
]

[

|x1 − x|
2
+ |y1 − y|

2
+ 2 |x1 − x| |y1 − y|

]

[(x1 − x)2 + (y1 − y)2]
[

|x− x2|
2
+ |y − y2|

2
+ 2 |x− x2| |y − y2|

] = 1.

Rearranging the last equality one gets

[(x1−x)2+(y1−y)2][(x−x2)
2+(y−y2)

2]+2|x1−x||y1−y|[(x−x2)
2+(y−y2)

2]
[(x1−x)2+(y1−y)2][(x−x2)2+(y−y2)2]+2|x−x2||y−y2|[(x1−x)2+(y1−y)2] = 1

which means that

2 |x1 − x| |y1 − y|
[

(x − x2)
2 + (y − y2)

2
]

2 |x− x2| |y − y2| [(x1 − x)2 + (y1 − y)2]
= 1

or simply

|x1 − x| |y1 − y|

|x− x2| |y − y2|
=

(x1 − x)2 + (y1 − y)2

(x− x2)2 + (y − y2)2
. (2)

Examining the left side of Equation (2) one obtains

|x1 − x| |y1 − y|

|x− x2| |y − y2|
=

(x1 − x) (y1 − y)

(x− x2) (y − y2)
(3)

for all positions of Q on P1P2. Using Equation (3) in Equation (2) one obtains

(x1 − x)(y1 − y)
[

(x− x2)
2 + (y − y2)

2
]

= (x − x2)(y − y2)
[

(x1 − x)2 + (y1 − y)2
]
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which can be expressed as follows:

(x1 − x)(x − x2) [(x− x2)(y1 − y) + (x1 − x)(y − y2)]

= (y1 − y)(y − y2) [(x − x2)(y1 − y) + (x1 − x)(y − y2)] .

Rearranging this equality one gets

[(x− x2)(y1 − y)− (x1 − x)(y − y2)] [(x1 − x)(x − x2)− (y1 − y)(y − y2)] = 0
(4)

If x1 = x2 then x = x1 = x2 and Equation (4) is obvious. If x1 6= x2 then

y = [(x2 − x)y1 − (x1 − x)y2] / (x2 − x1)

since Q is on the line P1P2. Now, using this value of y in the first bracket of
Equation (4) we get

(x− x2)(y1 − y)− (x1 − x)(y − y2)

= (x− x2)(y1 −
(x2−x)y1−(x1−x)y2

x2−x1

)− (x1 − x)( (x2−x)y1−(x1−x)y2

x2−x1

− y2)

= 1
x2−x1

[(x − x2)(xy1 − xy2 + x1y2 − x1y1)− (x1 − x)(xy2 − xy1 + x2y1 − x2y2)]

= 1
x2−x1

[(x − x1)(x − x2)(y1 − y2)− (x1 − x)(x − x2)(y2 − y1)] = 0

which shows that Equation (4) is satisfied.
The following corollary shows how one can find the coordinates of the division

point which divides the line segment joining two given points in a given ratio, in
the taxicab plane.

Corollary. Let P1 = (x1, y1) and P2 = (x2, y2) be two distinct points in the
taxicab plane. If Q = (x, y) divides the line segment P1P2 in ratio λ then,

x =
x1 + λx2

1 + λ
, y =

y1 + λy2
1 + λ

; λ ∈ R, λ 6= −1

as in the Euclidean plane.
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Proof. Although the Corollary follows from Theorem 1 we prefer to give a
direct proof. The given formula is obvious when λ = 0 or λ = −1. If λ 6= 0,−1 and
Q divides the line segment P1P2 in ratio λ, we have |dT [P1Q1] /dT [Q1P2]| = |λ|.
That is,

|x1 − x|+ |y1 − y|

|x− x2|+ |y − y2|
= |λ| . (5)

Since P1 6= P2,

|λ| = |λ|

(

|x1 − x2|+ |y1 − y2|

|x1 − x2|+ |y1 − y2|

)

=
|λx1 − λx2|+ |λy1 − λy2|

|x1 − x2|+ |y1 − y2|
.

Adding x1−x1 and y1−y1 to the first and second summands in the numerator and
similarly λx2 − λx2 and λy2 − λy2 in the denominator respectively, one obtains

|λ| =
|λx1 + x1 − x1 − λx2|+ |λy1 + y1 − y1 − λy2|

|x1 + λx2 − λx2 − x2|+ |y1 + λy2 − λy2 − y2|
.

Multiplying the numerator and the denominator of the right side of the last state-
ment by 1/ |1 + λ|, one gets

|λ| =

∣

∣

∣

∣

λx1 + x1 − x1 − λx2

1 + λ

∣

∣

∣

∣

+

∣

∣

∣

∣

λy1 + y1 − y1 − λy2
1 + λ

∣

∣

∣

∣

∣

∣

∣

∣

x1 + λx2 − λx2 − x2

1 + λ

∣

∣

∣

∣

+

∣

∣

∣

∣

y1 + λy2 − λy2 − y2
1 + λ

∣

∣

∣

∣

=

∣

∣

∣

∣

(1 + λ)x1

1 + λ
−

x1 + λx2

1 + λ

∣

∣

∣

∣

+

∣

∣

∣

∣

(1 + λ)y1
1 + λ

−
y1 + λy2
1 + λ

∣

∣

∣

∣

∣

∣

∣

∣

x1 + λx2

1 + λ
−

(1 + λ)x2

1 + λ

∣

∣

∣

∣

+

∣

∣

∣

∣

y1 + λy2
1 + λ

−
(1 + λ)y2
1 + λ

∣

∣

∣

∣

=

∣

∣

∣

∣

x1−
x1 + λx2

1 + λ

∣

∣

∣

∣

+

∣

∣

∣

∣

y1−
y1 + λy2
1 + λ

∣

∣

∣

∣

∣

∣

∣

∣

x1 + λx2

1 + λ
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.



112 MISSOURI JOURNAL OF MATHEMATICAL SCIENCES

Comparing this result with Equation (5) we obtain

x =
x1 + λx2

1 + λ
and y =

y1 + λy2
1 + λ

.

3. Theorems of Menelaus and Ceva in the Taxicab Plane. In this
section, the taxicab analogues of the Theorems of Menelaus and Ceva are studied.
In fact, the validity of these theorems is clear from the Theorem 1, but we prefer
to state and give partial proofs for them.

Theorem 2. (Menelaus’ Theorem.) Let {P1, P2, P3} be a triangle and
Q1, Q2, Q3 be on the lines that contain the sides P1P2, P2P3, P3P1 respectively,
in the taxicab plane. If Q1, Q2, Q3 are collinear, then

dT [P1Q1]

dT [Q1P2]
·
dT [P2Q2]

dT [Q2P3]
·
dT [P3Q3]

dT [Q3P1]
= −1 (6)

where none of Q1, Q2, Q3 coincide with any of P1, P2, P3.

Proof. Several cases are possible, according to the positions of points P1, P2, P3

and Q1, Q2, Q3. We give a proof of the theorem only in the following special case.
Let Pi = (xi, yi), i = 1, 2, 3 and xi 6= xi+1 and let Q1, Q2, Q3 be on a line l

given by y = mx+ k such that Qi = l ∧ PiPi+1 (mod 3) and l is not parallel to the
line PiPi+1, for i = 1, 2, 3 (Figure 1) . Clearly mxi − yi + k 6= 0 since Pi 6= Qj for
i, j = 1, 2, 3 and m 6= (yi+1 − yi)(xi+1 − xi)

−1. The equation of the line PiPi+1 is
given by

y = (yi+1 − yi)(xi+1 − xi)
−1x− (xiyi+1 − xi+1yi)(xi+1 − xi)

−1.

It follows from a simple calculation that

Qi =

(

xiyi+1 − xi+1yi − kxi + kxi+1

mxi −mxi+1 − yi + yi+1
,
mxiyi+1 −mxi+1yi − kyi + kyi+1

mxi −mxi+1 − yi + yi+1

)

.

Now let us find
dT [PiQi]

dT [QiPi+1]
.
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Figure 1.

dT [P1Q1]

dT [Q1P2]
= −

dT (P1, Q1)

dT (Q1, P2)

= −

∣

∣

∣
x1 −

x1y2−x2y1−kx1+kx2

mx1−mx2−y1+y2

∣

∣

∣
+
∣

∣

∣
y1 −

mx1y2−mx2y1−ky1+ky2

mx1−mx2−y1+y2

∣

∣

∣

∣

∣

∣

x1y2−x2y1−kx1+kx2

mx1−mx2−y1+y2

− x2

∣

∣

∣
+
∣

∣

∣

mx1y2−mx2y1−ky1+ky2

mx1−mx2−y1+y2

− y2

∣

∣

∣

= −
|mx2

1
−mx1x2−x1y1+x2y1−kx2+kx1|+|mx1y1−mx1y2+y1y2−y2

1
−ky2+ky1|

|mx2

2
−mx1x2−x2y2+x1y2−kx1+kx2|+|mx2y2−mx2y1+y1y2−y2

2
−ky1+ky2|

= − |x1(mx1−y1+k)−x2(mx1−y1+k)|+|y1(mx1−y1+k)−y2(mx1−y1+k)|
|x2(mx2−y2+k)−x1(mx2−y2+k)|+|y2(mx2−y2+k)−y1(mx2−y2+k)|

= −
(|x1 − x2|+ |y1 − y2|) |mx1 − y1 + k|

(|x1 − x2|+ |y1 − y2|) |mx2 − y2 + k|

= −
|mx1 − y1 + k|

|mx2 − y2 + k|
.

Similarly,

dT [P2Q2]

dT [Q2P3]
=

dT (P2, Q2)

dT (Q2, P3)
=

|mx2 − y2 + k|

|mx3 − y3 + k|
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and

dT [P3Q3]

dT [Q3P1]
=

dT (P3, Q3)

dT (Q3, P1)
=

|mx3 − y3 + k|

|mx1 − y1 + k|

and consequently,

dT [PiQi]

dT [QiPi+1]
= s

|mxi − yi + k|

|mxi+1 − yi+1 + k|
, s =

{

−1, if i = 1

1, if i = 2, 3.

Now, it can be easily computed that

3
∏

i=1

(dT [PiQi] /dT [QiPi+1]) = −1.

Theorem 3. (Converse of Menelaus’ Theorem.) Let {P1, P2, P3} be a triangle
and Q1, Q2, Q3 be three points on the lines that contain the sides P1P2, P2P3, P3P1,
respectively, in the taxicab plane. If

dT [P1Q1]

dT [Q1P2]
·
dT [P2Q2]

dT [Q2P3]
·
dT [P3Q3]

dT [Q3P1]
= −1,

then Q1, Q2, Q3 are collinear. Note that none of Q1, Q2, Q3 are P1, P2, P3.

Theorem 4. (Ceva’s Theorem.) Let {P1, P2, P3} be a triangle and lines l1, l2, l3
pass through the vertices P1, P2, P3, respectively and intersect lines containing the
opposite sides at points Q1, Q2, Q3. The lines l1, l2, l3 are concurrent (or parallel)
if and only if

dT [P1Q3]

dT [Q3P2]
·
dT [P2Q1]

dT [Q1P3]
·
dT [P3Q2]

dT [Q2P1]
= 1.

Note that none of Q1, Q2, Q3 are P1, P2, P3.
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4. Theorems of Directed Lines (Strahlensätze). In general, it is well-
known that the axiom of congruence and consequently properties of similarity for
triangles are not valid in the taxicab plane. But, it follows from Theorem 1 that
the following directed line theorem [6] is valid in it.

Theorem 5. Let a pencil of lines be intersected by a family of parallel lines in
the taxicab plane (see Figure 2).

(i) The ratios of the directed lengths of the corresponding segments on the lines
belonging to the pencil are the same. For example,

dT [SA] : dT [SB] : dT [SC] = dT [SA1] : dT [SB1] : dT [SC1]

= dT [SA2] : dT [SB2] : dT [SC2]

or
dT [SA1] : dT [SB1] = dT [A1A2] : dT [B1B2] .

(ii) The ratios of the directed lengths of line segments on the parallel lines and cor-
responding segments on the lines belonging to the pencil, which are measured
from the vertex, are the same. For example,

dT [CB] : dT [C1B1] : dT [C2B2] = dT [SC] : dT [SC1] : dT [SC2]

= dT [SB] : dT [SB1] : dT [SB2]

or

dT [AB] : dT [A1B1] : dT [A2B2] = dT [SA] : dT [SA1] : dT [SA2]

= dT [SB] : dT [SB1] : dT [SB2] .

(iii) The ratios of the lengths of the corresponding segments on the parallel lines
are the same. That is,

dT [AB] : dT [BC] = dT [A1B1] : dT [B1C1] = dT [A2B2] : dT [B2C2] .

Notice that here a : b : c = a1 : b1 : c1 if and only if a/a1 = b/b1 = c/c1.
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Figure 2.
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