RELATIVE ALGEBRAIC STRUCTURES

Amir M. Rahimi

Abstract

The concept and some of the algebraic properties of the rejective and non-absorptive sets of a subgroup, subring, and subgroup of a module over a ring are investigated. It is shown that the set theoretic complement of a nonabsorptive set in the above mentioned algebraic substructures is a normal subgroup (respectively, (left, right) ideal, submodule) of its underlying algebraic structure. The invariant property of the non-absorptive sets under the operation of inversion in the related underlying algebraic structure is proved. $G \backslash R(H)$, the set theoretic complement of the rejective set of a subgroup H in a group G, is closed under the product in G and whenever $|G|$ the order of the group G is finite, $|R(H)|=(k-s)|H|$ where each of the k and s is the index of H in G and in $G \backslash R(H)$, respectively. For the case of rings and modules, the set theoretic complement of the rejective set of a substructure in the underlying ring is a subring of the underlying ring. For any subring S of a ring R, examples and some of the properties of S-relative (left) ideals and S-relative submodules are given and also it is shown that S is contained in the set theoretic complement of the rejective set of that S-relative (left) ideal (respectively, submodule). Finally, some of the properties of the relative homomorphisms of R-modules, and the rejective (respectively, non-absorptive) sets of the group homomorphisms of R-modules are investigated.

1. Rejective and Non-Absorptive Sets of Some Algebraic Substruc-

 tures.Definition 1.1. For a subgroup H of a group G, the set of all elements h in H such that for each h there exists an element g in G with $g h g^{-1} \notin H$ is called the non-absorptive set of H in G and is denoted by $N(H, G)$ or $N(H)$ whenever there is no confusion in the context.

Remark. In the above definition, it is clear that H is a normal subgroup of G if and only if $N(H)$ is the empty set.

Theorem 1.1. Let $N(H)$ be the non-absorptive set of a subgroup H in a group G. Then $H \backslash N(H)$ is a normal subgroup of G.

Proof. Suppose to the contrary that a and b are in $H \backslash N(H)$ and $a b$ is in $N(H)$. Thus, for some $g \in G, g a b g^{-1}=g a g^{-1} g b g^{-1} \notin H$ which is a contradiction since both $g a g^{-1}$ and $g b g^{-1}$ are in H. Next, $b \in H \backslash N(H)$ implies $g b g^{-1} \in H$ for all $g \in G$ and this makes $\left(g b g^{-1}\right)^{-1}=g b^{-1} g^{-1}$ to be in H for all $g \in G$ which implies $b^{-1} \in H \backslash N(H)$. Finally, it remains to show that $H \backslash N(H)$ is normal in G. Suppose for some $a \in H \backslash N(H)$ there exists $g \in G$ such that $g a g^{-1} \notin H \backslash N(H)$. Hence, by definition, $g a g^{-1} \in N(H)$ and this forces $k\left(g a g^{-1}\right) k^{-1}=(k g) a(k g)^{-1} \notin H$ for some k in G and this is a contradiction to the choice of a in $H \backslash N(H)$.

Theorem 1.2. Let $N(H)$ be the non-absorptive set of a subgroup H in a group G. Then for each $x \in G \backslash N(H), x^{-1}$ is also in $G \backslash N(H)$.

Proof. Suppose to the contrary that $x \in G \backslash N(H)$ and x^{-1} is in $N(H)$. Consequently, x is in $H \backslash N(H)$ which implies $\left(g x g^{-1}\right)^{-1}=g x^{-1} g^{-1} \in H$ for all $g \in G$ and this is a contradiction to the choice of x^{-1} in $N(H)$.

Remark. From the above theorem, it is clear that $x^{-1} \in N(H)$ whenever $x \in$ $N(H)$. In other words, $N(H)$ is invariant under the group operation of inversion. Furthermore, $N(H)$ can never be closed under the product in the group since e the group identity element is not in $N(H)$.

Corollary 1.1. Let $N(H)$ be the non-absorptive set of a subgroup H in a group G. Then $G \backslash N(H)$ is a subgroup of G if and only if $G \backslash N(H)$ is closed under the product in G.

Remark. For a family $\left\{G_{i} \mid i \in I\right\}$ of groups with H_{i} a subgroup of G_{i} for each $i \in I$, it is not difficult to show that $\prod N\left(H_{i}, G_{i}\right) \subseteq N\left(\prod H_{i}, \prod G_{i}\right)$ and for $|I|=2$, $\left(N\left(H_{1}\right) \times H_{2}\right) \cup\left(H_{1} \times N\left(H_{2}\right)\right)=N\left(H_{1} \times H_{2}\right)$. In general, $\cup_{i \in I} \prod^{j} H_{i}=N\left(\prod H_{i}\right)$ where $\prod^{j} H_{i}$ is the Cartesian product of all subgroups $H_{i}(i \neq j)$ and $N\left(H_{j}\right)$ for $i=j$.

Definition 1.2. For a subgroup H of a group G, the set of all $g \in G$ such that for each g there exists an element h in H with $g h g^{-1} \notin H$ is called the rejective set of H in G and is denoted by $R(H, G)$ or $R(H)$ whenever there is no confusion in the context.

Remark. It is clear that $R(H, G)=\emptyset$ if and only if H is a normal subgroup of G. From the definition, it is obvious that $R(H, G) \subseteq G \backslash H$.

Theorem 1.3. For any subgroup H of a group $G, G \backslash R(H)$ the set theoretic complement of the rejective set of H in G is closed under the group operation of product.

Proof. Suppose to the contrary that $a, b \in G \backslash R(H)$ and $a b \in R(H)$. Thus, for some h in $H, a b h b^{-1} a^{-1}=a\left(b h b^{-1}\right) a^{-1} \notin H$ and this is a contradiction.

Corollary 1.2. Let $R(H)$ be the rejective set of a subgroup H in a group G. Then $G \backslash R(H)$ is a subgroup of G if and only if $R(H)$ is invariant under the operation of inversion in G.

Corollary 1.3. Let $R(H)$ be the rejective set of a subgroup H in a finite group G. Then $G \backslash R(H)$ is a subgroup of G and $|R(H)|=(k-s)|H|$ where k is the index of H in G and s is the index of H in $G \backslash R(H)$.

Proof. Since every non-empty finite subset of a group G is a subgroup of G if and only if it is closed under the product in G, consequently, by applying the above theorem together with Lagrange's Theorem, $G \backslash R(H)$ is a subgroup of G and each of $|G \backslash R(H)|$ and $|G|$ is divisible by $|H|$. Thus, $s|H|=|G \backslash R(H)|=$ $|G|-|R(H)|=k|H|-|R(H)|$ which implies $|R(H)|=(k-s)|H|$ where s is the index of H in $G \backslash R(H)$ and k is the index of H in G.

Example. As an application of the above corollary, it is easy to conclude that any subgroup H of a group G with a finite order $2 n$ is normal in G whenever the order of H is n and there exists an element g in $G \backslash H$ such that $g h g^{-1} \in H$ for all $h \in H$.

Definition 1.3. For a subring A of a ring R, the set of all elements $a \in A$ such that for each a there exists an element r in R with $r a \notin A$ (respectively, $a r \notin A$) is called the left (respectively, right) non-absorptive set of A in R and is denoted by $N_{l}(A, R)$ or $N_{l}(A)$ (respectively, $N_{r}(A, R)$ or $\left.N_{r}(A)\right)$ whenever there is no confusion in the context.

Remark. From the above definition, it is clear that A is a left (respectively, right) ideal in R if and only if $N_{l}(A)$ (respectively, $N_{r}(A)$) is the empty set.

Theorem 1.4. Let A be a subring of a ring R. Then $A \backslash N_{l}(A)$ (respectively, $\left.A \backslash N_{r}(A)\right)$ is a left (respectively, right) ideal of R.

Proof. Let each of a and b be an element in $A \backslash N_{l}(A)$ and suppose to the contrary that $(a-b) \notin A \backslash N_{l}(A)$. Then for some r in $R, r(a-b)=r a-r b \notin A$
which is a contradiction since both $r a$ and $r b$ are in A. Now, for any $a \in A \backslash N_{l}(A)$ and $r \in R$ if $r a \notin A \backslash N_{l}(A)$, then $r a$ must be in $N_{l}(A)$. Hence, for some s in R, $s(r a)=(s r) a \notin A$ which is a contradiction to the choice of a in $A \backslash N_{l}(A)$. A proof for the case of $N_{r}(A)$ can be followed analogously.

Theorem 1.5. Let $N_{l}(A)$ be the left non-absorptive set of a subring A in a ring R. Then for each element $a \in R \backslash N_{l}(A),-a$ is also in $R \backslash N_{l}(A)$. In other words, $a \in N_{l}(A)$ implies $-a \in N_{l}(A)$.
 since A is an additive subgroup of R. Thus, $r(-a)=-r(a) \in A$ for all r in R and this is a contradiction to the choice of $-a \in N_{l}(A)$.

Remark. Let $\left\{R_{i} \mid i \in I\right\}$ be a family of rings with A_{i} a subring of R_{i} for each $i \in I$. Then $\prod N_{l}\left(A_{i}, R_{i}\right) \subseteq N_{l}\left(\prod A_{i}, \prod R_{i}\right)$, and for $|I|=2$, we have $\left(N_{l}\left(A_{1}\right) \times A_{2}\right) \cup\left(A_{1} \times N_{l}\left(A_{2}\right)\right)=N_{l}\left(A_{1} \times A_{2}\right)$. In general, $\cup_{i \in I} \prod^{j} A_{i}=N_{l}\left(\prod_{i \in I} A_{i}\right)$ where $\prod^{j} A_{i}$ is the Cartesian product of all subrings $A_{i}(i \neq j)$ and $N_{l}\left(A_{j}\right)$ for $i=j$.

Remark. In any commutative ring, it is obvious that the left and right nonabsorptive sets of a subring coincide with each other.

Definition 1.4. For a subring A of a ring R, the set of all $r \in R$ such that for each r there exists an element a in A with $r a \notin A$ (respectively, ar $\notin A$) is called the left (respectively, right) rejective set of A in R and is denoted by $R_{l}(A, R)$ or $R_{l}(A)$ (respectively, $R_{r}(A, R)$ or $\left.R_{r}(A)\right)$ whenever there is no confusion in the context.

Remark. It is clear that $R_{l}(A)$ (respectively, $R_{r}(A)$) is a subset of $R \backslash A$ and A is a left (respectively, right) ideal of R if and only if $R_{l}(A)$ (respectively, $R_{r}(A)$) is the empty set. Note that in a commutative ring R, both the left and right rejective sets of any subring A of R coincide with each other.

Theorem 1.6. Let $R_{l}(A)$ (respectively, $\left.R_{r}(A)\right)$ be the left (respectively, right) rejective set of a subring A in a ring R. Then $R \backslash R_{l}(A)$ (respectively, $R \backslash R_{r}(A)$) is a subring of R.

Proof. Suppose $r, s \in R \backslash R_{l}(A)$ and $r-s \notin R \backslash R_{l}(A)$. Then for some a in A, $(r-s) a=r a-s a \notin A$ and this is a contradiction since both $r a$ and $s a$ are in A. Now, suppose for some $r, s \in R \backslash R_{l}(A)$, $r s$ is not in $R \backslash R_{l}(A)$. Thus, for some a in $A,(r s) a=r(s a) \notin A$ and this is a contradiction to the choice of r and s.

Defintion 1.5. Let A be a subgroup of an R-module M over a ring R. The set of all elements $a \in A$ such that for each a there exists an element $r \in R$ with $r a \notin A$ is called the non-absorptive set of A in M and is denoted by $N(A, M)$ or $N(A)$ whenever there is no confusion in the context.

Remark. From the above definition, it is clear that A is a submodule of M if and only if $N(A)$ is the empty set.

Theorem 1.7. Let $N(A)$ be the non-absorptive set of a subgroup A in an R module M over a ring R. Then $A \backslash N(A)$ is a submodule of M.

Proof. Similar to the proof of Theorem 1.4.
Theorem 1.8. Let $N(A)$ be the non-absorptive set of a subgroup A in an R module M over a ring R. Then $a \in M \backslash N(A)$ implies $-a \in M \backslash N(A)$. In other words, $a \in N(A)$ implies $-a \in N(A)$.

Proof. Similar to the proof of Theorem 1.5.
Remark. Let $\left\{M_{i} \mid i \in I\right\}$ be a family of R-module over a ring R and A_{i} a subgroup of M_{i} for each $i \in I$. Then $\prod N\left(A_{i}\right) \subseteq N\left(\prod A_{i}\right)$ and for $|I|=2$, $\left(N\left(A_{1}\right) \times A_{2}\right) \cup\left(A_{1} \times N\left(A_{2}\right)\right)=N\left(A_{1} \times A_{2}\right)$. In general, we have $\cup_{i \in I} \prod^{j} A_{i}=$ $N\left(\prod_{i \in I} A_{i}\right)$ where $\prod^{j} A_{i}$ is the Cartesian product of all subgroups $A_{i}(i \neq j)$ and $N\left(A_{j}\right)$ for $i=j$.

Definition 1.6. For a group A of an R-module M over a ring R, the set of all elements $r \in R$ such that for each r there exists an element a in A with $r a \notin A$ is called the rejective set of A in M and is denoted by $R(A, M)$ or $R(A)$ whenever there is no confusion in the context.

Remark. For the above definition, it is clear that A is a submodule of M if and only if $R(A)$ is the empty set.

Theorem 1.9. If $R(A)$ is the rejective set of a subgroup A in an R-module M over a ring R, then $R \backslash R(A)$ is a subring of R.

Proof. Similar to the proof of Theorem 1.6.
Theorem 1.10. For any two subgroups (respectively, subrings, subgroups) A and B of a group (respectively, a ring, an R-module), $A-N(A) \subseteq B-N(B)$ (respectively, $A-N_{l}(A) \subseteq B-N_{l}(B), A-N(A) \subseteq B-N(B)$) whenever $A \subseteq B$.

Proof. We just give a proof for the subgroups A and B of a group G and leave the other cases to the reader. Suppose to the contrary that there exists an element $a \in A-N(A)$ with $a \notin B-N(B)$. Thus, $a \in N(B)$ and this implies $g a g^{-1} \notin B$ for some $g \in G$. Consequently, $g a g^{-1}$ is not in A which implies $a \in N(A)$ and this is a contradiction to the choice of a in $A-N(A)$.

2. Relative Ideals.

Definition 2.1. Let S be a subring of a ring R. A subring A of R is an S relative left (respectively, right) ideal of R provided $s \in S$ and $a \in A$ imply $s a \in A$ (respectively, as $\in A$). A is an S-relative ideal of R if it is both an S-relative left and an S-relative right ideal of R. A subring A of R is said to be a strictly S-relative left (respectively, right) ideal of R whenever A is an S-relative left (respectively, right) ideal of R and it is not an R-relative left (respectively, right) ideal of R

Remark. Whenever a statement is made about the S-relative left ideals, it is to be understood that the analogous statement holds for the S-relative right ideals. It is clear that any left ideal A of a ring R is an S-relative left ideal of R for any subring S of R. Also, A contains S whenever 1_{R} the identity element of R is in A.
 subring of all matrices of the form

$$
\left(\begin{array}{ll}
x & 0 \\
0 & 0
\end{array}\right)
$$

is neither a left nor a right ideal of M. Let S be the set of all 2×2 matrices with zero $(2,1)$ entries and T the set of all 2×2 matrices with zero $(1,2)$ entries. Now, it is not difficult to show that A is an S-relative left and a T-relative right ideal of M. Furthermore, A is neither an S-relative right ideal nor a T-relative left ideal of M.

Theorem 2.1. If S and A are two subrings of a ring R with A an S-relative left ideal of R, then $R \backslash R_{l}(A)$ contains S and A is also an $R \backslash R_{l}(A)$-relative left ideal of R where $R_{l}(A)$ is the left rejective set of A in R.

Proof. See Theorem 1.6.

Corollary 2.1. For a subring S of a ring R if $\left\{A_{i} \mid i \in I\right\}$ is a family of S relative left ideals of R, then A_{l} is a $\cap_{i \in I} R \backslash R_{l}\left(A_{i}\right)$-relative left ideal of R for each i in I.

Theorem 2.2. The following results can be proved directly from the definition.
a) If A is an S-relative left ideal of a ring R, then $S \cap R_{l}(A)=\emptyset$.
b) If $f: R \rightarrow T$ is a homomorphism of rings and A is an S-relative left ideal of R, then $f(A)$ is an $f(S)$-relative left ideal of T.
c) If A is both an S-relative left and a T-relative right ideal of a ring R, then A is an $S \cap T$-relative ideal of R.
d) Let $\left\{S_{i} \mid i \in I\right\}$ be a family of subrings of a ring R. Then A is a $\cap_{i \in I} S_{i}$-relative left ideal of R if A is an S_{i}-relative left ideal of R for each $i \in I$.
e) If $S_{1} \subseteq S_{2}$ are two subrings of a ring R and A is an S_{2}-relative left ideal of R, then A is an S_{1}-relative left ideal of R.
f) For any ascending chain $\left\{S_{i} \mid i \in I\right\}$ of subrings S_{i} of a ring R, A is a $\cup_{i \in I} S_{i^{-}}$ relative left ideal of R if and only if A is an S_{i}-relative left ideal of R for each $i \in I$.
g) For a family $\left\{S_{i} \mid i \in I\right\}$ of subrings S_{i} of a ring $R, \cap_{i \in I} A_{i}$ is a $\cap_{i \in I} S_{i}$-relative left ideal of R whenever A_{i} is an S_{i}-relative left ideal of R for each $i \in I$.
h) Let $\left\{R_{i} \mid i \in I\right\}$ be a family of rings and S_{i} a subring of R_{i} for each $i \in I$. If A_{i} is an S_{i}-relative left ideal of R_{i} for each $i \in I$, then $\prod_{i \in I} A_{i}$ is a $\prod_{i \in I} S_{i}$-relative left ideal of $\prod_{i \in I} R_{i}$ the direct product of the rings.
Example. In the ring R of $n \times n$ matrices over a division ring D, let I_{k} be the set of all matrices that have nonzero entries only in column k and J_{k}^{\prime} the set of all matrices with zero k th rows. Then I_{k} is a left ideal and a J_{k}^{\prime}-relative right ideal but not a right ideal of R. If J_{k} consists of those matrices with nonzero entries only in row k and I_{k}^{\prime} the set of all matrices with zero k th columns, then J_{k} is a right ideal and an I_{k}^{\prime}-relative left ideal but not a left ideal in R.

Theorem 2.3. For any subring A of a ring R, the left rejective set of A in R is $R \backslash A$ whenever A contains 1_{R} the identity element of R.

Proof. $A=R \backslash R_{l}(A)$ since A is always contained in $R \backslash R_{l}(A)$ and $1_{R} \in A$ implies $R \backslash R_{l}(A) \subseteq A$.

Example. As an application of the above theorem let $R[X]$ be the ring of all polynomials over an integral domain R and A the ring of all polynomials with zero
X-coefficients, then $R(A, R[X])$ the rejective set of A in $R[X]$ is $R[X] \backslash A$ which is exactly the set of all polynomials with nonzero X-coefficients.

Definition 2.2. Let X be a subset of a ring R and S a subring of R. If $\left\{A_{i} \mid i \in I\right\}$ is the family of all S-relative left ideals of R containing X, then $\cap_{i \in I} A_{i}$ is called the S-relative left ideal generated by X in R and is denoted by $(X)_{S}$. The elements of X are called S-relative generators of $(X)_{S}$. If $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$, then the S-relative left ideal $(X)_{S}$ is denoted by $\left(x_{1}, x_{2}, \ldots, x_{n}\right)_{S}$ and is said to be an S-relative finitely generated left ideal. An S-relative left ideal $(x)_{S}$ generated by a single element x is called an S-relative principal left ideal of R.

Theorem 2.4. Let S be a subring of a ring R, a an element in R, and K the set of all elements of the form $r a+a s+n a+\sum_{i=1}^{m} r_{i} a s_{i}$ where $r, s, r_{i}, s_{i} \in S, n$ an integer, and m runs over the set of non-negative integers. Then we have the following results:

1) $K \subseteq(a)_{S}$ the S-relative principal ideal generated by a in R. Moreover, $a \in S$ implies $(a)_{S}=K=(a)^{S}$ the principal ideal generated by a in S.
2) $x \in(a)_{S} \backslash K$ implies $-x \in(a)_{S} \backslash K$.
3) If R is a commutative ring and $a \in S$, then $(a)_{S}$ consists of all elements of the form $s a+n a$ where $s \in S$ and $n \in Z$ the ring of rational integers.

Proof. The proof is an immediate consequence of the definition and we leave it to the reader as an exercise.

Theorem 2.5. For a subring S of a ring R if A is an S-relative ideal of R, then

1) $S+A=\{s+a \mid s \in S, a \in A\}$ is also an S-relative ideal in R.
2) $S \cup A$ is a multiplicative system in R.
3) $S \cap A$ is an S-relative ideal of R, and also it is an S-relative left ideal of R whenever A is an S-relative left ideal of R.

Proof. The proof is a direct consequence of the definition and we leave it to the reader.

Theorem 2.6. In a commutative ring R, let each of $S_{1}, S_{2}, \ldots, S_{n}$ be a subring of R and A_{i} an S_{i}-relative ideal of R for each $i=1,2, \ldots, n$, respectively. Then $A_{1} A_{2} A_{3} \cdots A_{n}$ is an $S_{i_{1}} S_{i_{2}} \cdots S_{i_{k}}$-relative ideal of R where $\left\{i_{1}, i_{2}, \ldots, i_{k}\right\}$ is a subset of the set $\{1,2, \ldots, n\}$.

Proof. The proof follows directly from the definition and we leave it to the reader.

Definition 2.3. Let S be a subring of a ring R. An S-relative left ideal P of R is said to be an S-relative prime left ideal of R if $P \neq R$ and for any S-relative left ideals A and B of $R, A B \subseteq P$ implies $A \subseteq P$ or $B \subseteq P$.

Theorem 2.7. For a subring S of a ring R if P is an S-relative left ideal of R such that $P \neq R$ and for all elements $a, b \in R, a b \in P$ implies $a \in P$ or $b \in P$, then P is an S-relative prime left ideal of R. Conversely if R is commutative and P is an S-relative prime ideal of R, then for any $a, b \in S, a b \in P$ implies either $a \in P$ or $b \in P$.

Proof. Let A and B be two S-relative left ideals of R such that $A B \subseteq P$. Suppose $A \nsubseteq P$, then there exists an element $a \in A$ with $a \ni P$. Now, for each $b \in B, a b \in A B \subseteq P$ implies $a \in P$ or $b \in P$ which implies $b \in P$ and consequently $B \subseteq P$. Conversely, $a b \in P$ implies $(a b)_{S} \subseteq P$. Now since R is commutative and $a, b \in S$, then $(a)_{S}(b)_{S} \subseteq(a b)_{S} \subseteq P$ which implies the desired conclusion.

Remark. From the above result it is clear that if P is an S-relative prime ideal of a commutative ring R, then $S \backslash P$ is a multiplicative system in R.

Remark. Any S-relative (left) ideal A of a ring R is a (left) S-module.

3. Relative Submodules.

Definition 3.1. For a ring R, let M be an R-module and S a subring of R. A non-empty subset A of M is an S-relative submodule of M provided that A is an additive subgroup of M and $s a \in A$ for all $s \in S$ and $a \in A$.
 any S-relative (left) ideal of a ring R is an S-relative submodule of R whenever R is assumed to be an R-module over itself.

Remark. An S-relative submodule B of an R-module A over a ring R need not be a subring of R whenever $A=R$.

Example. Let A be an S-relative left ideal of a ring R and M an R-module. If X is a non-empty subset of M, then $A X=\left\{\sum_{i=1}^{n} a_{i} x_{i} \mid a_{i} \in A, x_{i} \in\right.$ X, and n a positive integer $\}$ forms an S-relative submodule of M. Similarly, for any $x \in M, A x=\{a x \mid a \in A\}$ is an S-relative submodule of M.

Theorem 3.1. For a subring S of a ring R if A is an S-relative submodule of an R-module M, then A is an $R \backslash R(A)$-relative submodule of M and S is contained in $R \backslash R(A)$ where $R(A)$ is the rejective set of A in M.

Proof. See Theorem 1.9.
Corollary 3.1. For a subring S of a ring R if $\left\{A_{i} \mid i \in I\right\}$ is a family of S-relative submodules of an R-module M, then A_{i} is a $\cap_{i \in I}\left(R \backslash R\left(A_{i}\right)\right)$-relative submodule of M for each i in I.

Theorem 3.2. The following results can be proved directly from the definition.
a) If A is an S-relative submodule of a module M over a ring R, then $S \cap R(A)=\emptyset$ where $R(A)$ is the rejective set of A in M.
b) If R is a ring and $f: M \rightarrow N$ an R-module homomorphism, then the homomorphic image (respectively, inverse image) of any S-relative submodule of M (respectively, N) is again an S-relative submodule of N (respectively, M).
c) For a ring R if $\left\{S_{i} \mid i \in I\right\}$ is a family of subrings of R, A an R-module, and B_{i} an S_{i}-relative submodule of A for each $i \in I$, then $\cap_{i \in I} B_{i}$ is a $\cap_{i \in I} S_{i}$-relative submodule of A.
d) If $S_{1} \subseteq S_{2}$ are two subrings of a ring R and A is an S_{2}-relative submodule of an R-module M, then A is an S_{1}-relative submodule of M.
e) For any ascending chain $\left\{S_{i} \mid i \in I\right\}$ of subrings S_{i} of a ring R, A is a $\cup_{i \in I} S_{i^{-}}$ relative submodule of an R-module M if and only if A is an S_{i}-relative submodule of M for each $i \in I$.
f) For a family $\left\{S_{i} \mid i \in I\right\}$ of subrings S_{i} of a ring $R, \cap_{i \in I} A_{i}$ is a $\cap_{i \in I} S_{i}$-relative submodule of an R-module whenever A_{i} is an S_{i}-relative submodule of M for each $i \in I$.
g) For a family of rings $\left\{R_{i} \mid i \in I\right\}$, assume S_{i} is a subring of R_{i}, M_{i} an $R_{i^{-}}$ module, and A_{i} an S_{i}-relative submodule of M_{i} for each $i \in I$, then $\prod_{i \in I} A_{i}$ is a $\prod_{i \in I} S_{i}$-relative submodule of $\prod_{i \in I} M_{i}$.
h) Let S be a subring of a ring R and $\left\{A_{i} \mid i \in I\right\}$ an ascending chain of subgroups of an R-module M. Then $\cup_{i \in I} A_{i}$ is an S-relative submodule of M whenever A_{i} is an S-relative submodule of M for each $i \in I$.

Definition 3.2. If X is a subset of a module M over a ring R and S is a subring of R, then the intersection of all S-relative submodules of M containing X is called the S-relative submodule generated by X or spanned by X and is denoted by $\langle X\rangle_{S}$. If X is finite and X generates the S-relative submodule A in M, then A is said to be S-relative finitely generated. If $X=\{a\}$, then $\langle a\rangle_{S}$ is called the S-relative cyclic submodule generated by a. Finally if $\left\{B_{i} \mid i \in I\right\}$ is a family of S-relative submodules of M, then the S-relative submodule generated by $X=\cup_{i \in I} B_{i}$ is called
the sum of the S-relative submodules B_{i}. If the index set I is finite, then the sum of $B_{1}, B_{2}, \ldots, B_{n}$ is denoted by $B_{1}+B_{2}+\cdots+B_{n}$.

Theorem 3.3. Let S be a subring of a ring R, A an R-module, X a subset of $A,\left\{B_{i} \mid i \in I\right\}$ a family of S-relative submodules of A, a an element in A, and $S a=\{s a \mid s \in S\}$.

1) $S a$ is an S-relative submodule of A and the map $S \rightarrow S a$ given by $s \vdash s a$ is an S-module epimorphism.
2) The S-relative cyclic submodule C generated by a is $\{s a+n a \mid s \in S$ and $n \in$ \mathbb{Z} the ring of integers $\}$. If S has an identity 1_{S} and $1_{S} a=a$, then $C=S a$.
3) The S-relative submodule D generated by X is the set of all elements of the form $\sum_{i=1}^{n} s_{i} a_{i}+\sum_{j=1}^{m} n_{j} b_{j}$ where n, m are non-negative integers, $n_{j} \in \mathbb{Z}$, $s_{i} \in S$ and $a_{i}, b_{j} \in X$. If S has an identity 1_{S} and for each $x \in X, 1_{S} x=x$, then $D=S X=\left\{\sum_{i=1}^{n} s_{i} a_{i} \mid s_{i} \in S, a_{i} \in X\right.$, and n a non-negative integer $\}$.
4) The sum of the family $\left\{B_{i} \mid i \in I\right\}$ consists of all finite sums $b_{i_{1}}+b_{i_{2}}+\cdots+b_{i_{n}}$ where $b_{i_{k}}$ is an element of $B_{i_{k}}$.

Proof. The proof follows directly from the definition.
Definition 3.3. Let S and T with $S \subseteq T$ be two subrings of a ring R, A an R-module and B a T-module. A group homomorphism $f: A \rightarrow B$ is said to be an S-relative homomorphism of modules if for all $s \in S$ and $a \in A, f(s a)=s f(a)$.

Theorem 3.4. Let S be a subring of a ring R and B an S-relative submodule of a module A over R. Then the quotient group A / B is an S-module with the action of S on A / B given by $s(a+B)=s a+B$ for all $s \in S$ and $a \in A$. The map $\pi_{S}: A \rightarrow A / B$ given by $a \vdash a+B$ is an S-relative epimorphism of modules with the kernel B. The map π_{S} is called the S-relative canonical epimorphism or projection.

Proof. If $a+B=a^{\prime}+B$, then $a-a^{\prime} \in B$. Since B is an S-relative submodule of A, then $s a-s a^{\prime}=s\left(a-a^{\prime}\right)$ is an element in B for all s in S. Thus, $s a+B=s a^{\prime}+B$ which implies that the action of S on A / B is well defined. The remainder of the proof is left to the reader.

Definition 3.4. Let A and B be two R-modules over a ring R and $f: A \rightarrow B$ a group homomorphism. The set of all r in R such that for each r there exists an element a in A with $f(r a) \neq r f(a)$ is called the rejective set of f in R and is denoted by $R(f, R)$ or $R(f)$ whenever there is no confusion in the context.

Remark. From the above definition, it is clear that $f: A \rightarrow B$ is an R-module homomorphism if and only if $R(f, R)$ is the empty set. Note that zero is always in $R \backslash R(f)$ since $f(0 a)=f(0)=0=0 f(a)$. In addition if $f: A \rightarrow B$ is a group homomorphism of two unitary R-modules A and B, then $f\left(1_{R} a\right)=f(a)=1_{R} f(a)$ which implies $1_{R} \in R \backslash R(f)$.

Theorem 3.5. Assume each of A and B is an R-module over a ring R. If $f: A \rightarrow B$ is a group homomorphism, then $R \backslash R(f)$ the set theoretic complement of the rejective set of f in R is a subring of R and f is an $R \backslash R(f)$-relative homomorphism of A and B. In addition, $R \backslash R(f)$ is a subfield of R whenever R is a field and A and B are unitary R-modules.

Proof. For any $r, s \in R \backslash R(f)$ and $a \in A, f((r-s) a)=f(r a-s a)=$ $f(r a)+f(-s a)=r f(a)-s f(a)=(r-s) f(a)$ which implies $(r-s)$ is in $R \backslash R(f)$. Similarly, $f((r s) a)=f(r(s a))=r f(s a)=(r s) f(a)$ implies $r s$ is in $R \backslash R(f)$. Now suppose R is a field and r is an arbitrary nonzero element of $R \backslash R(f)$. Thus, for any a in $A, f(a)=f\left(r r^{-1} a\right)=r f\left(r^{-1} a\right)$ which implies $r^{-1} f(a)=f\left(r^{-1} a\right)$.

Corollary 3.2. Let S be a subring of a ring R and $f: A \rightarrow B$ a group homomorphism of the R-modules A and B. Then f is an $R \backslash R(f)$-relative homomorphism of the R-modules A and B and S is contained in $R \backslash R(f)$ whenever f is an S-relative homomorphism of A and B.

Definition 3.5. Let A and B be two R-modules over a $\operatorname{ring} R$ and $f: A \rightarrow B$ a homomorphism of the groups. The set of all a in A such that for each a there exists an element r in R with $f(r a) \neq r f(a)$ is called the non-absorptive set of f in R and is denoted by $N(f, R)$ or $N(f)$ whenever there is no confusion in the context.

Remark. In the above definition, it is clear that f is an R-module homomorphism of A and B if and only if $N(f)$ is the empty set.

Theorem 3.6. Let A and B be two R-modules over a ring R and $f: A \rightarrow B$ a group homomorphism. Then $A \backslash N(f)$ the set theoretic complement of the nonabsorptive set of f in A is a submodule of A.

Proof. Note that $A \backslash N(f)$ is a non-empty set since it contains the zero element $f(r 0)=f(0)=0=r f(0)$ for any r in R. For any $r \in R$ and $a, b \in A \backslash N(f)$, $f(r(a-b))=f(r a-r b)=f(r a)+f(-r b)=r f(a)+r f(-b)=r f(a-b)$ which implies $a-b$ is in $A \backslash N(f)$. Now suppose for some a in $A \backslash N(f)$ there exists an r in R such
that $r a \ni A \backslash N(f)$. Then there exists $s \in R$ such that $f(s(r a)) \neq s f(r a)=(s r) f(a)$ which is a contradicition to the choice of a in $A \backslash N(f)$.

In conclusion, it should be noted that the above ideas are new to the author and a search of the literature found no mention of such a concept as presented here. It is entirely possible, however, that a reader might know of a source of similar ideas.

Amir Rahimi

Inst. for Studies in Theoretical Phys. \& Math.
Department of Mathematics
Niavaran Bldg.
P. O. Box 19395-5746

Tehran, IRAN

