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RELATIVE ALGEBRAIC STRUCTURES

Amir M. Rahimi

Abstract. The concept and some of the algebraic properties of the rejective

and non-absorptive sets of a subgroup, subring, and subgroup of a module over

a ring are investigated. It is shown that the set theoretic complement of a non-

absorptive set in the above mentioned algebraic substructures is a normal subgroup

(respectively, (left, right) ideal, submodule) of its underlying algebraic structure.

The invariant property of the non-absorptive sets under the operation of inversion

in the related underlying algebraic structure is proved. G \R(H), the set theoretic

complement of the rejective set of a subgroup H in a group G, is closed under the

product inG and whenever |G| the order of the groupG is finite, |R(H)| = (k−s)|H |

where each of the k and s is the index of H in G and in G \ R(H), respectively.

For the case of rings and modules, the set theoretic complement of the rejective

set of a substructure in the underlying ring is a subring of the underlying ring.

For any subring S of a ring R, examples and some of the properties of S-relative

(left) ideals and S-relative submodules are given and also it is shown that S is

contained in the set theoretic complement of the rejective set of that S-relative

(left) ideal (respectively, submodule). Finally, some of the properties of the relative

homomorphisms of R-modules, and the rejective (respectively, non-absorptive) sets

of the group homomorphisms of R-modules are investigated.

1. Rejective and Non-Absorptive Sets of Some Algebraic Substruc-

tures.

Definition 1.1. For a subgroup H of a group G, the set of all elements h in H

such that for each h there exists an element g in G with ghg−1 /∈ H is called the

non-absorptive set of H in G and is denoted by N(H,G) or N(H) whenever there

is no confusion in the context.

Remark. In the above definition, it is clear that H is a normal subgroup of G

if and only if N(H) is the empty set.

Theorem 1.1. Let N(H) be the non-absorptive set of a subgroup H in a group

G. Then H \N(H) is a normal subgroup of G.
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Proof. Suppose to the contrary that a and b are in H \ N(H) and ab is in

N(H). Thus, for some g ∈ G, gabg−1 = gag−1gbg−1 /∈ H which is a contradiction

since both gag−1 and gbg−1 are in H . Next, b ∈ H \N(H) implies gbg−1 ∈ H for all

g ∈ G and this makes (gbg−1)−1 = gb−1g−1 to be in H for all g ∈ G which implies

b−1 ∈ H\N(H). Finally, it remains to show that H\N(H) is normal in G. Suppose

for some a ∈ H \ N(H) there exists g ∈ G such that gag−1 /∈ H \ N(H). Hence,

by definition, gag−1 ∈ N(H) and this forces k(gag−1)k−1 = (kg)a(kg)−1 /∈ H for

some k in G and this is a contradiction to the choice of a in H \N(H).

Theorem 1.2. Let N(H) be the non-absorptive set of a subgroup H in a group

G. Then for each x ∈ G \N(H), x−1 is also in G \N(H).

Proof. Suppose to the contrary that x ∈ G \ N(H) and x−1 is in N(H).

Consequently, x is in H \ N(H) which implies (gxg−1)−1 = gx−1g−1 ∈ H for all

g ∈ G and this is a contradiction to the choice of x−1 in N(H).

Remark. From the above theorem, it is clear that x−1 ∈ N(H) whenever x ∈

N(H). In other words, N(H) is invariant under the group operation of inversion.

Furthermore, N(H) can never be closed under the product in the group since e the

group identity element is not in N(H).

Corollary 1.1. Let N(H) be the non-absorptive set of a subgroup H in a group

G. Then G \N(H) is a subgroup of G if and only if G \N(H) is closed under the

product in G.

Remark. For a family {Gi | i ∈ I} of groups with Hi a subgroup of Gi for each

i ∈ I, it is not difficult to show that
∏

N(Hi, Gi) ⊆ N(
∏

Hi,
∏

Gi) and for |I| = 2,

(N(H1)×H2)∪ (H1 ×N(H2)) = N(H1 ×H2). In general, ∪i∈I

∏j
Hi = N(

∏

Hi)

where
∏j Hi is the Cartesian product of all subgroups Hi (i 6= j) and N(Hj) for

i = j.

Definition 1.2. For a subgroup H of a group G, the set of all g ∈ G such that

for each g there exists an element h in H with ghg−1 /∈ H is called the rejective set

of H in G and is denoted by R(H,G) or R(H) whenever there is no confusion in

the context.

Remark. It is clear that R(H,G) = ∅ if and only if H is a normal subgroup of

G. From the definition, it is obvious that R(H,G) ⊆ G \H .
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Theorem 1.3. For any subgroup H of a group G, G \ R(H) the set theoretic

complement of the rejective set of H in G is closed under the group operation of

product.

Proof. Suppose to the contrary that a, b ∈ G \ R(H) and ab ∈ R(H). Thus,

for some h in H , abhb−1a−1 = a(bhb−1)a−1 /∈ H and this is a contradiction.

Corollary 1.2. Let R(H) be the rejective set of a subgroup H in a group G.

Then G \ R(H) is a subgroup of G if and only if R(H) is invariant under the

operation of inversion in G.

Corollary 1.3. Let R(H) be the rejective set of a subgroup H in a finite group

G. Then G\R(H) is a subgroup of G and |R(H)| = (k−s)|H | where k is the index

of H in G and s is the index of H in G \R(H).

Proof. Since every non-empty finite subset of a group G is a subgroup of G

if and only if it is closed under the product in G, consequently, by applying the

above theorem together with Lagrange’s Theorem, G \ R(H) is a subgroup of G

and each of |G \ R(H)| and |G| is divisible by |H |. Thus, s|H | = |G \ R(H)| =

|G| − |R(H)| = k|H | − |R(H)| which implies |R(H)| = (k − s)|H | where s is the

index of H in G \R(H) and k is the index of H in G.

Example. As an application of the above corollary, it is easy to conclude that

any subgroup H of a group G with a finite order 2n is normal in G whenever the

order of H is n and there exists an element g in G \H such that ghg−1 ∈ H for all

h ∈ H .

Definition 1.3. For a subring A of a ring R, the set of all elements a ∈ A such

that for each a there exists an element r in R with ra /∈ A (respectively, ar /∈ A) is

called the left (respectively, right) non-absorptive set of A in R and is denoted by

Nl(A,R) or Nl(A) (respectively, Nr(A,R) orNr(A)) whenever there is no confusion

in the context.

Remark. From the above definition, it is clear that A is a left (respectively,

right) ideal in R if and only if Nl(A) (respectively, Nr(A)) is the empty set.

Theorem 1.4. Let A be a subring of a ring R. Then A \ Nl(A) (respectively,

A \Nr(A)) is a left (respectively, right) ideal of R.

Proof. Let each of a and b be an element in A \ Nl(A) and suppose to the

contrary that (a − b) /∈ A \ Nl(A). Then for some r in R, r(a − b) = ra − rb /∈ A
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which is a contradiction since both ra and rb are in A. Now, for any a ∈ A \Nl(A)

and r ∈ R if ra /∈ A \Nl(A), then ra must be in Nl(A). Hence, for some s in R,

s(ra) = (sr)a /∈ A which is a contradiction to the choice of a in A \Nl(A). A proof

for the case of Nr(A) can be followed analogously.

Theorem 1.5. Let Nl(A) be the left non-absorptive set of a subring A in a ring

R. Then for each element a ∈ R \Nl(A), −a is also in R \Nl(A). In other words,

a ∈ Nl(A) implies −a ∈ Nl(A).

Proof. Suppose a ∈ R \Nl(A) and −a ∈ Nl(A). Then a must be in A \Nl(A)

since A is an additive subgroup of R. Thus, r(−a) = −r(a) ∈ A for all r in R and

this is a contradiction to the choice of −a ∈ Nl(A).

Remark. Let {Ri | i ∈ I} be a family of rings with Ai a subring of Ri

for each i ∈ I. Then
∏

Nl(Ai, Ri) ⊆ Nl(
∏

Ai,
∏

Ri), and for |I| = 2, we have

(Nl(A1)×A2)∪(A1×Nl(A2)) = Nl(A1×A2). In general, ∪i∈I

∏j
Ai = Nl(

∏

i∈I Ai)

where
∏j Ai is the Cartesian product of all subrings Ai (i 6= j) andNl(Aj) for i = j.

Remark. In any commutative ring, it is obvious that the left and right non-

absorptive sets of a subring coincide with each other.

Definition 1.4. For a subring A of a ring R, the set of all r ∈ R such that for

each r there exists an element a in A with ra /∈ A (respectively, ar /∈ A) is called the

left (respectively, right) rejective set of A in R and is denoted by Rl(A,R) or Rl(A)

(respectively, Rr(A,R) or Rr(A)) whenever there is no confusion in the context.

Remark. It is clear that Rl(A) (respectively, Rr(A)) is a subset of R\A and A

is a left (respectively, right) ideal of R if and only if Rl(A) (respectively, Rr(A)) is

the empty set. Note that in a commutative ring R, both the left and right rejective

sets of any subring A of R coincide with each other.

Theorem 1.6. Let Rl(A) (respectively, Rr(A)) be the left (respectively, right)

rejective set of a subring A in a ring R. Then R \ Rl(A) (respectively, R \ Rr(A))

is a subring of R.

Proof. Suppose r, s ∈ R \Rl(A) and r− s /∈ R \Rl(A). Then for some a in A,

(r − s)a = ra − sa /∈ A and this is a contradiction since both ra and sa are in A.

Now, suppose for some r, s ∈ R \ Rl(A), rs is not in R \ Rl(A). Thus, for some a

in A, (rs)a = r(sa) /∈ A and this is a contradiction to the choice of r and s.
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Defintion 1.5. Let A be a subgroup of an R-module M over a ring R. The

set of all elements a ∈ A such that for each a there exists an element r ∈ R with

ra /∈ A is called the non-absorptive set of A in M and is denoted by N(A,M) or

N(A) whenever there is no confusion in the context.

Remark. From the above definition, it is clear that A is a submodule of M if

and only if N(A) is the empty set.

Theorem 1.7. Let N(A) be the non-absorptive set of a subgroup A in an R-

module M over a ring R. Then A \N(A) is a submodule of M .

Proof. Similar to the proof of Theorem 1.4.

Theorem 1.8. Let N(A) be the non-absorptive set of a subgroup A in an R-

module M over a ring R. Then a ∈ M \N(A) implies −a ∈ M \ N(A). In other

words, a ∈ N(A) implies −a ∈ N(A).

Proof. Similar to the proof of Theorem 1.5.

Remark. Let {Mi | i ∈ I} be a family of R-module over a ring R and Ai

a subgroup of Mi for each i ∈ I. Then
∏

N(Ai) ⊆ N(
∏

Ai) and for |I| = 2,

(N(A1) × A2) ∪ (A1 × N(A2)) = N(A1 × A2). In general, we have ∪i∈I

∏j Ai =

N(
∏

i∈I Ai) where
∏j

Ai is the Cartesian product of all subgroups Ai (i 6= j) and

N(Aj) for i = j.

Definition 1.6. For a group A of an R-module M over a ring R, the set of all

elements r ∈ R such that for each r there exists an element a in A with ra /∈ A is

called the rejective set of A in M and is denoted by R(A,M) or R(A) whenever

there is no confusion in the context.

Remark. For the above definition, it is clear that A is a submodule of M if

and only if R(A) is the empty set.

Theorem 1.9. If R(A) is the rejective set of a subgroup A in an R-module M

over a ring R, then R \R(A) is a subring of R.

Proof. Similar to the proof of Theorem 1.6.

Theorem 1.10. For any two subgroups (respectively, subrings, subgroups) A

and B of a group (respectively, a ring, an R-module), A − N(A) ⊆ B − N(B)

(respectively, A−Nl(A) ⊆ B −Nl(B), A−N(A) ⊆ B −N(B)) whenever A ⊆ B.
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Proof. We just give a proof for the subgroups A and B of a group G and leave

the other cases to the reader. Suppose to the contrary that there exists an element

a ∈ A − N(A) with a /∈ B − N(B). Thus, a ∈ N(B) and this implies gag−1 /∈ B

for some g ∈ G. Consequently, gag−1 is not in A which implies a ∈ N(A) and this

is a contradiction to the choice of a in A−N(A).

2. Relative Ideals.

Definition 2.1. Let S be a subring of a ring R. A subring A of R is an S-

relative left (respectively, right) ideal of R provided s ∈ S and a ∈ A imply sa ∈ A

(respectively, as ∈ A). A is an S-relative ideal of R if it is both an S-relative left

and an S-relative right ideal of R. A subring A of R is said to be a strictly S-relative

left (respectively, right) ideal of R whenever A is an S-relative left (respectively,

right) ideal of R and it is not an R-relative left (respectively, right) ideal of R

Remark. Whenever a statement is made about the S-relative left ideals, it is

to be understood that the analogous statement holds for the S-relative right ideals.

It is clear that any left ideal A of a ring R is an S-relative left ideal of R for any

subring S of R. Also, A contains S whenever 1R the identity element of R is in A.

Example. Let M be the ring of all 2 × 2 matrices over a ring R. Then A the

subring of all matrices of the form

(

x 0
0 0

)

is neither a left nor a right ideal of M . Let S be the set of all 2 × 2 matrices with

zero (2, 1) entries and T the set of all 2× 2 matrices with zero (1, 2) entries. Now,

it is not difficult to show that A is an S-relative left and a T -relative right ideal of

M . Furthermore, A is neither an S-relative right ideal nor a T -relative left ideal of

M .

Theorem 2.1. If S and A are two subrings of a ring R with A an S-relative left

ideal of R, then R \Rl(A) contains S and A is also an R \Rl(A)-relative left ideal

of R where Rl(A) is the left rejective set of A in R.

Proof. See Theorem 1.6.
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Corollary 2.1. For a subring S of a ring R if {Ai | i ∈ I} is a family of S-

relative left ideals of R, then Al is a ∩i∈IR \Rl(Ai)-relative left ideal of R for each

i in I.

Theorem 2.2. The following results can be proved directly from the definition.

a) If A is an S-relative left ideal of a ring R, then S ∩Rl(A) = ∅.

b) If f :R → T is a homomorphism of rings and A is an S-relative left ideal of R,

then f(A) is an f(S)-relative left ideal of T .

c) If A is both an S-relative left and a T -relative right ideal of a ring R, then A

is an S ∩ T -relative ideal of R.

d) Let {Si | i ∈ I} be a family of subrings of a ring R. Then A is a ∩i∈ISi-relative

left ideal of R if A is an Si-relative left ideal of R for each i ∈ I.

e) If S1 ⊆ S2 are two subrings of a ring R and A is an S2-relative left ideal of R,

then A is an S1-relative left ideal of R.

f) For any ascending chain {Si | i ∈ I} of subrings Si of a ring R, A is a ∪i∈ISi-

relative left ideal of R if and only if A is an Si-relative left ideal of R for each

i ∈ I.

g) For a family {Si | i ∈ I} of subrings Si of a ring R, ∩i∈IAi is a ∩i∈ISi-relative

left ideal of R whenever Ai is an Si-relative left ideal of R for each i ∈ I.

h) Let {Ri | i ∈ I} be a family of rings and Si a subring of Ri for each i ∈ I. If Ai

is an Si-relative left ideal of Ri for each i ∈ I, then
∏

i∈I Ai is a
∏

i∈I Si-relative

left ideal of
∏

i∈I Ri the direct product of the rings.

Example. In the ring R of n× n matrices over a division ring D, let Ik be the

set of all matrices that have nonzero entries only in column k and J ′

k the set of all

matrices with zero kth rows. Then Ik is a left ideal and a J ′

k-relative right ideal but

not a right ideal of R. If Jk consists of those matrices with nonzero entries only in

row k and I ′k the set of all matrices with zero kth columns, then Jk is a right ideal

and an I ′k-relative left ideal but not a left ideal in R.

Theorem 2.3. For any subring A of a ring R, the left rejective set of A in R is

R \A whenever A contains 1R the identity element of R.

Proof. A = R \ Rl(A) since A is always contained in R \ Rl(A) and 1R ∈ A

implies R \Rl(A) ⊆ A.

Example. As an application of the above theorem let R[X ] be the ring of all

polynomials over an integral domain R and A the ring of all polynomials with zero
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X-coefficients, then R(A,R[X ]) the rejective set of A in R[X ] is R[X ] \A which is

exactly the set of all polynomials with nonzero X-coefficients.

Definition 2.2. Let X be a subset of a ring R and S a subring of R. If

{Ai | i ∈ I} is the family of all S-relative left ideals of R containing X , then ∩i∈IAi

is called the S-relative left ideal generated by X in R and is denoted by (X)S . The

elements of X are called S-relative generators of (X)S . If X = {x1, x2, . . . , xn},

then the S-relative left ideal (X)S is denoted by (x1, x2, . . . , xn)S and is said to be

an S-relative finitely generated left ideal. An S-relative left ideal (x)S generated

by a single element x is called an S-relative principal left ideal of R.

Theorem 2.4. Let S be a subring of a ring R, a an element in R, and K the

set of all elements of the form ra + as + na +
∑m

i=1 riasi where r, s, ri, si ∈ S, n

an integer, and m runs over the set of non-negative integers. Then we have the

following results:

1) K ⊆ (a)S the S-relative principal ideal generated by a in R. Moreover, a ∈ S

implies (a)S = K = (a)S the principal ideal generated by a in S.

2) x ∈ (a)S \K implies −x ∈ (a)S \K.

3) If R is a commutative ring and a ∈ S, then (a)S consists of all elements of the

form sa+ na where s ∈ S and n ∈ Z the ring of rational integers.

Proof. The proof is an immediate consequence of the definition and we leave

it to the reader as an exercise.

Theorem 2.5. For a subring S of a ring R if A is an S-relative ideal of R, then

1) S +A = {s+ a | s ∈ S, a ∈ A} is also an S-relative ideal in R.

2) S ∪ A is a multiplicative system in R.

3) S ∩ A is an S-relative ideal of R, and also it is an S-relative left ideal of R

whenever A is an S-relative left ideal of R.

Proof. The proof is a direct consequence of the definition and we leave it to

the reader.

Theorem 2.6. In a commutative ring R, let each of S1, S2, . . . , Sn be a sub-

ring of R and Ai an Si-relative ideal of R for each i = 1, 2, . . . , n, respectively.

Then A1A2A3 · · ·An is an Si1Si2 · · ·Sik -relative ideal of R where {i1, i2, . . . , ik} is

a subset of the set {1, 2, . . . , n}.

Proof. The proof follows directly from the definition and we leave it to the

reader.
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Definition 2.3. Let S be a subring of a ring R. An S-relative left ideal P of R

is said to be an S-relative prime left ideal of R if P 6= R and for any S-relative left

ideals A and B of R, AB ⊆ P implies A ⊆ P or B ⊆ P .

Theorem 2.7. For a subring S of a ring R if P is an S-relative left ideal of R

such that P 6= R and for all elements a, b ∈ R, ab ∈ P implies a ∈ P or b ∈ P , then

P is an S-relative prime left ideal of R. Conversely if R is commutative and P is

an S-relative prime ideal of R, then for any a, b ∈ S, ab ∈ P implies either a ∈ P

or b ∈ P .

Proof. Let A and B be two S-relative left ideals of R such that AB ⊆ P .

Suppose A 6⊆ P , then there exists an element a ∈ A with a ∋ P . Now, for each

b ∈ B, ab ∈ AB ⊆ P implies a ∈ P or b ∈ P which implies b ∈ P and consequently

B ⊆ P . Conversely, ab ∈ P implies (ab)S ⊆ P . Now since R is commutative and

a, b ∈ S, then (a)S(b)S ⊆ (ab)S ⊆ P which implies the desired conclusion.

Remark. From the above result it is clear that if P is an S-relative prime ideal

of a commutative ring R, then S \ P is a multiplicative system in R.

Remark. Any S-relative (left) ideal A of a ring R is a (left) S-module.

3. Relative Submodules.

Definition 3.1. For a ring R, let M be an R-module and S a subring of R. A

non-empty subset A of M is an S-relative submodule of M provided that A is an

additive subgroup of M and sa ∈ A for all s ∈ S and a ∈ A.

Example. A subring S of a ring R is an S-relative submodule of R. In general,

any S-relative (left) ideal of a ring R is an S-relative submodule of R whenever R

is assumed to be an R-module over itself.

Remark. An S-relative submodule B of an R-module A over a ring R need

not be a subring of R whenever A = R.

Example. Let A be an S-relative left ideal of a ring R and M an R-module.

If X is a non-empty subset of M , then AX = {
∑n

i=1 aixi | ai ∈ A, xi ∈

X, and n a positive integer} forms an S-relative submodule of M . Similarly, for

any x ∈ M , Ax = {ax | a ∈ A} is an S-relative submodule of M .

Theorem 3.1. For a subring S of a ring R if A is an S-relative submodule of an

R-module M , then A is an R \ R(A)-relative submodule of M and S is contained

in R \R(A) where R(A) is the rejective set of A in M .
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Proof. See Theorem 1.9.

Corollary 3.1. For a subring S of a ring R if {Ai | i ∈ I} is a family of S-relative

submodules of an R-module M , then Ai is a ∩i∈I(R \ R(Ai))-relative submodule

of M for each i in I.

Theorem 3.2. The following results can be proved directly from the definition.

a) If A is an S-relative submodule of a module M over a ring R, then S∩R(A) = ∅

where R(A) is the rejective set of A in M .

b) If R is a ring and f :M → N an R-module homomorphism, then the homo-

morphic image (respectively, inverse image) of any S-relative submodule of M

(respectively, N) is again an S-relative submodule of N (respectively, M).

c) For a ring R if {Si | i ∈ I} is a family of subrings of R, A an R-module, and Bi

an Si-relative submodule of A for each i ∈ I, then ∩i∈IBi is a ∩i∈ISi-relative

submodule of A.

d) If S1 ⊆ S2 are two subrings of a ring R and A is an S2-relative submodule of

an R-module M , then A is an S1-relative submodule of M .

e) For any ascending chain {Si | i ∈ I} of subrings Si of a ring R, A is a ∪i∈ISi-

relative submodule of an R-module M if and only if A is an Si-relative sub-

module of M for each i ∈ I.

f) For a family {Si | i ∈ I} of subrings Si of a ring R, ∩i∈IAi is a ∩i∈ISi-relative

submodule of an R-module whenever Ai is an Si-relative submodule of M for

each i ∈ I.

g) For a family of rings {Ri | i ∈ I}, assume Si is a subring of Ri, Mi an Ri-

module, and Ai an Si-relative submodule of Mi for each i ∈ I, then
∏

i∈I Ai

is a
∏

i∈I Si-relative submodule of
∏

i∈I Mi.

h) Let S be a subring of a ring R and {Ai | i ∈ I} an ascending chain of subgroups

of an R-module M . Then ∪i∈IAi is an S-relative submodule of M whenever

Ai is an S-relative submodule of M for each i ∈ I.

Definition 3.2. If X is a subset of a module M over a ring R and S is a subring

of R, then the intersection of all S-relative submodules of M containing X is called

the S-relative submodule generated by X or spanned by X and is denoted by 〈X〉S .

If X is finite and X generates the S-relative submodule A in M , then A is said

to be S-relative finitely generated. If X = {a}, then 〈a〉S is called the S-relative

cyclic submodule generated by a. Finally if {Bi | i ∈ I} is a family of S-relative

submodules ofM , then the S-relative submodule generated byX = ∪i∈IBi is called
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the sum of the S-relative submodules Bi. If the index set I is finite, then the sum

of B1, B2, . . . , Bn is denoted by B1 +B2 + · · ·+Bn.

Theorem 3.3. Let S be a subring of a ring R, A an R-module, X a subset of

A, {Bi | i ∈ I} a family of S-relative submodules of A, a an element in A, and

Sa = {sa | s ∈ S}.

1) Sa is an S-relative submodule of A and the map S → Sa given by s ⊢ sa is an

S-module epimorphism.

2) The S-relative cyclic submodule C generated by a is {sa+ na | s ∈ S and n ∈

Z the ring of integers}. If S has an identity 1S and 1Sa = a, then C = Sa.

3) The S-relative submodule D generated by X is the set of all elements of the

form
∑n

i=1 siai +
∑m

j=1 njbj where n,m are non-negative integers, nj ∈ Z,

si ∈ S and ai, bj ∈ X . If S has an identity 1S and for each x ∈ X , 1Sx = x,

then D = SX = {
∑n

i=1 siai | si ∈ S, ai ∈ X, and n a non-negative integer}.

4) The sum of the family {Bi | i ∈ I} consists of all finite sums bi1 + bi2 + · · ·+ bin
where bik is an element of Bik .

Proof. The proof follows directly from the definition.

Definition 3.3. Let S and T with S ⊆ T be two subrings of a ring R, A an

R-module and B a T -module. A group homomorphism f :A → B is said to be an

S-relative homomorphism of modules if for all s ∈ S and a ∈ A, f(sa) = sf(a).

Theorem 3.4. Let S be a subring of a ring R and B an S-relative submodule

of a module A over R. Then the quotient group A/B is an S-module with the

action of S on A/B given by s(a+B) = sa+B for all s ∈ S and a ∈ A. The map

πS :A → A/B given by a ⊢ a+B is an S-relative epimorphism of modules with the

kernel B. The map πS is called the S-relative canonical epimorphism or projection.

Proof. If a+B = a′+B, then a−a′ ∈ B. Since B is an S-relative submodule of

A, then sa−sa′ = s(a−a′) is an element in B for all s in S. Thus, sa+B = sa′+B

which implies that the action of S on A/B is well defined. The remainder of the

proof is left to the reader.

Definition 3.4. Let A and B be two R-modules over a ring R and f :A → B

a group homomorphism. The set of all r in R such that for each r there exists

an element a in A with f(ra) 6= rf(a) is called the rejective set of f in R and is

denoted by R(f,R) or R(f) whenever there is no confusion in the context.
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Remark. From the above definition, it is clear that f :A → B is an R-module

homomorphism if and only if R(f,R) is the empty set. Note that zero is always

in R \ R(f) since f(0a) = f(0) = 0 = 0f(a). In addition if f :A → B is a group

homomorphism of two unitary R-modules A and B, then f(1Ra) = f(a) = 1Rf(a)

which implies 1R ∈ R \R(f).

Theorem 3.5. Assume each of A and B is an R-module over a ring R. If

f :A → B is a group homomorphism, then R \ R(f) the set theoretic complement

of the rejective set of f in R is a subring of R and f is an R \ R(f)-relative

homomorphism of A and B. In addition, R \R(f) is a subfield of R whenever R is

a field and A and B are unitary R-modules.

Proof. For any r, s ∈ R \ R(f) and a ∈ A, f((r − s)a) = f(ra − sa) =

f(ra) + f(−sa) = rf(a)− sf(a) = (r− s)f(a) which implies (r− s) is in R \R(f).

Similarly, f((rs)a) = f(r(sa)) = rf(sa) = (rs)f(a) implies rs is in R \R(f). Now

suppose R is a field and r is an arbitrary nonzero element of R \ R(f). Thus, for

any a in A, f(a) = f(rr−1a) = rf(r−1a) which implies r−1f(a) = f(r−1a).

Corollary 3.2. Let S be a subring of a ring R and f :A → B a group homomor-

phism of the R-modules A and B. Then f is an R\R(f)-relative homomorphism of

the R-modules A and B and S is contained in R \R(f) whenever f is an S-relative

homomorphism of A and B.

Definition 3.5. Let A and B be two R-modules over a ring R and f :A → B a

homomorphism of the groups. The set of all a in A such that for each a there exists

an element r in R with f(ra) 6= rf(a) is called the non-absorptive set of f in R

and is denoted by N(f,R) or N(f) whenever there is no confusion in the context.

Remark. In the above definition, it is clear that f is an R-module homomor-

phism of A and B if and only if N(f) is the empty set.

Theorem 3.6. Let A and B be two R-modules over a ring R and f :A → B a

group homomorphism. Then A \ N(f) the set theoretic complement of the non-

absorptive set of f in A is a submodule of A.

Proof. Note that A\N(f) is a non-empty set since it contains the zero element

f(r0) = f(0) = 0 = rf(0) for any r in R. For any r ∈ R and a, b ∈ A \ N(f),

f(r(a−b)) = f(ra−rb) = f(ra)+f(−rb) = rf(a)+rf(−b) = rf(a−b) which implies

a−b is in A\N(f). Now suppose for some a in A\N(f) there exists an r in R such
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that ra ∋ A\N(f). Then there exists s ∈ R such that f(s(ra)) 6= sf(ra) = (sr)f(a)

which is a contradicition to the choice of a in A \N(f).

In conclusion, it should be noted that the above ideas are new to the author

and a search of the literature found no mention of such a concept as presented here.

It is entirely possible, however, that a reader might know of a source of similar ideas.
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