## SOLUTIONS

No problem is ever permanently closed. Any comments, new solutions, or new insights on old problems are always welcomed by the problem editor.
21. [1990, 80; 1991, 95] Proposed by Stanley Rabinowitz, Westford, Massachusetts.

Find distinct positive integers, $a, b, c, d$ such that

$$
a+b+c+d+a b c d=a b+b c+c a+a d+b d+c d+a b c+a b d+a c d+b c d
$$

Solution by Les Reid, Southwest Missouri State University, Springfield, Missouri.

More generally, we will find all positive integer solutions to

$$
a+b+c+d+a b c d=a b c+a b d+a c d+b c d+a b+a c+a d+b c+b d+c d
$$

Rewriting as

$$
a b c d-a b c-a b d-a c d-b c d-a b-a c-a d-b c-c d+a+b+c+d=0
$$

and noting that the left-hand side has the opposite parity of $(a-1)(b-1)(c-1)(d-1)$ [since their difference is $2(a b+a c+a d+b c+b d+c d-a-b-c-d)+1$ ], we see that $(a-1)(b-1)(c-1)(d-1)$ must be odd, hence $a, b, c$, and $d$ must all be even.

Since our original equation is symmetric in the variables, we may assume without loss of generality that $0<d \leq c \leq b \leq a$.

If $d=2$ and $c=2$, our equation is equivalent to $a b+7 a+7 b=0$ which has no positive solutions.

If $d=2$ and $c=4$, our equation may be rewritten as $(a-13)(b-13)=171$. Since 171 can be factored as $171 \cdot 1,57 \cdot 3,19 \cdot 9$, we obtain the solutions $a=184, b=14$; $a=70, b=16 ; a=32, b=22$.

If $d=2$ and $c=6$, our equation may be rewritten as $(3 a-19)(3 b-19)=373$. Since 373 is prime, the only possible factorization is as $373 \cdot 1$, but this yields non-integer values for $a$ and $b$.

If $d=2$ and $c=8$, our equation becomes $5 a b-25 a-25 b=6$, which is clearly impossible since the left-hand side is not divisible by 5 .

If $d=2$ and $c \geq 10$, then

$$
\begin{gathered}
a b c d-a b c-a b d-a c d-b c d-a b-a c-a d-b c-b d-c d+a+b+c+d= \\
a b c-3 a b-3 a c-3 b c-a-b-c+2 \geq 10 a b-3 a b-3 a b-3 a b-a-b-b+2= \\
a b-a-2 b+2=(a-2)(b-1)>0
\end{gathered}
$$

so there are no further solutions when $d=2$.
If $d=4$ and $c=4$, our equation may be rewritten as $(7 a-23)(7 b-23)=585$. The only factorization of 585 whose factors are both congruent to $-23 \equiv 5 \bmod 7$ is $117 \cdot 5$, which yields $a=20, b=4$.
If $d=4$ and $c \geq 6$, then

$$
\begin{aligned}
a b c d-a b c-a b d-a c d-b c d- & a b-a c-a d-b c-b d-c d+a+b+c+d \\
& =3 a b c-5 a b-5 a c-5 b c-3 a-3 b-3 c+4 \\
& \geq 18 a b-5 a b-5 a b-5 a b-3 a-3 b-3 b+4 \\
& =3 a b-3 a-6 b+4 \\
& =3(a-2)(b-1)-2 \geq 3 \cdot 4 \cdot 5-2>0 .
\end{aligned}
$$

If $d \geq 6$, then

$$
\begin{gathered}
a b c d-a b c-a b d-a c d-b c d-a b-a c-a d-b c-b d-c d+a+b+c+d \geq \\
6 a b c-a b c-a b c-a b c-a b c-a b-a c-a b-b c-a b-b c+a+b+c+6= \\
2 a b c-3 a b-2 b c-a c+a+b+c+6 \geq 12 a b-3 a b-2 a b-a b+a+b+6+6= \\
6 a b+a+b+12>0
\end{gathered}
$$

so there are no more positive solutions.
Therefore, the only positive solutions of our equation (up to reordering) are

$$
\begin{aligned}
& a=184, b=14, c=4, d=2 \\
& a=70, b=16, c=4, d=2 \\
& a=32, b=22, c=4, d=2 \\
& a=20, b=4, c=4, d=4
\end{aligned}
$$

133. [2001,206] Proposed by José Luis Díaz, Universidad Politécnica de Cataluña, Barcelona, Spain.

Let $n$ be a positive integer. Show that

$$
\sum_{k=1}^{n} \frac{k}{\log \left(1+\frac{1}{k}\right)}<\frac{n^{2}(n+2)}{2}
$$

Here, log denotes the natural logarithm.
Solution by Joe Howard, Portales, New Mexico and Ovidiu Furdui, Western Michigan University, Kalamazoo, Michigan. We use the Logarithmic-Arithmetic Mean inequality, which says that for $a>b>0$,

$$
\frac{a-b}{\log a-\log b}<\frac{a+b}{2}
$$

Since

$$
\log \left(1+\frac{1}{k}\right)=\log (k+1)-\log k
$$

we have

$$
\frac{1}{\log (k+1)-\log k}<\frac{2 k+1}{2} .
$$

Multiplying by $k>0$ it follows that

$$
\begin{aligned}
& \sum_{k=1}^{n} \frac{k}{\log \left(1+\frac{1}{k}\right)}<\sum_{k=1}^{n} k^{2}+\frac{1}{2} \sum_{k=1}^{n} k \\
& =\frac{n(n+1)(2 n+1)}{6}+\frac{n(n+1)}{4}=\frac{n(n+1)(4 n+5)}{12}
\end{aligned}
$$

Note that

$$
\frac{n(n+1)(4 n+5)}{12} \leq \frac{n^{2}(n+2)}{2} \quad \text { for } n \geq 1
$$

since

$$
4 n^{2}+9 n+5 \leq 6 n^{2}+12 n \text { if and only if } 5 \leq 2 n^{2}+3 n \text { for } n \geq 1
$$

Also solved by Les Reid, Southwest Missouri State University, Springfield, Missouri; J. D. Chow, Edinburg, Texas; Joseph Dence, University of MissouriSt. Louis, St. Louis, Missouri; Craig Haile, College of the Ozarks, Point Lookout, Missouri; Alan H. Rapoport, Santurce, Puerto Rico; Joe Howard, Portales, New Mexico (2 solutions); and the proposer.

Les Reid's solution, in addition to giving the stronger upper bound in the featured solution, gave a lower bound for the sum, i.e.,

$$
\frac{n\left(4 n^{2}+9 n+4\right)}{12}<\sum_{k=1}^{n} \frac{k}{\log \left(1+\frac{1}{k}\right)} \text { for } n \geq 1
$$

134. [2001,206] Proposed by Larry Hoehn, Austin Peay State University, Clarksville, Tennessee.

Let square DEFG be inscribed in right triangle ABC , square HIJK be inscribed in triangle GBD, and square LMNP be inscribed in triangle AFE as shown in the figure. Prove or disprove that $\mathrm{KG}=\mathrm{LF}$.


Solution I by Clayton W. Dodge, University of Maine, Orono, Maine. Clearly, all the right triangles and their inscribed squares are similar, so that corresponding parts are proportional. In particular, $M N / E A=I J / B D$. Also, $K G / K H=$ $D G / B D$ and $L F / L P=E F / E A$. Then we have

$$
L F=\frac{E F \cdot L P}{E A}=D G \cdot \frac{M N}{E A}=D G \cdot \frac{I J}{B D}=\frac{D G \cdot K H}{B D}=K G
$$

Solution II by Leon Hall, University of Missouri - Rolla, Rolla, Missouri.


Let $a=B C, b=A C, c=A B, a_{1}=C D, b_{1}=C E$, and $s=F G$. Then from similar triangles,

$$
\frac{a_{1}}{a}=\frac{b_{1}}{b}=\frac{s}{c}
$$

and

$$
\begin{aligned}
& \frac{K G}{D G}=\frac{K G}{s}=\frac{b_{1}}{b} \quad \text { so } \quad K G=\frac{s^{2}}{c} \\
& \frac{L F}{E F}=\frac{L F}{s}=\frac{a_{1}}{a} \text { so } L F=\frac{s^{2}}{c}
\end{aligned}
$$

and thus, $K G=L F$.
Leon Hall also had several remarks regarding the problem.
Remark 1. There is a third length also equal to $K G$ and $L F$. Inscribe square $Q R S T$ in triangle $C D E$ as shown in the figure. Then

$$
\frac{Q T}{s}=\frac{s}{c} \quad \text { so } \quad Q T=\frac{s^{2}}{c}
$$

Remark 2. There ought to be some relationship(s) between the three small squares, and there is. Let $s_{1}=H K, s_{2}=L P$, and $s_{3}=Q T$. Then, again using similar figures,

$$
\frac{s_{1}}{s}=\frac{s}{b}, \quad \frac{s_{2}}{s}=\frac{s}{a}, \quad \text { and } \quad \frac{s_{3}}{s}=\frac{s}{c} .
$$

This leads to the relationships

$$
b s_{1}=a s_{2}=c s_{3}=s^{2}
$$

and

$$
\frac{1}{s_{1}^{2}}+\frac{1}{s_{2}^{2}}=\frac{1}{s_{3}^{2}}
$$

Remark 3. Now disregard the three small squares and consider the three triangles $C D E, B D G$, and $A E F$, together with square $D E F G$. If the areas of the triangles are denoted $T_{1}, T_{2}$, and $T_{3}$ respectively, then some more similar triangle work gives

$$
T_{1}=\frac{a b s^{2}}{2 c^{2}}, \quad T_{2}=\frac{a s^{2}}{2 b}, \quad T_{3}=\frac{b s^{2}}{2 a}
$$

From these it follows that

$$
\frac{s^{2}}{2}=\sqrt{T_{1}\left(T_{2}+T_{3}\right)}
$$

or, in words, half the area of square $D E F G$ is the geometric mean of the area of triangle $C D E$ and the sum of the areas of triangles $B D G$ and $A E F$.

Remark 4. This problem is similar to one of the problems in the May 1998 Scientific American article, "Japanese Temple Geometry", by Tony Rothman. There, squares $L M N P$ and $Q R S T$ are not drawn, and a new square is inscribed in triangle $B H I$. Then circles are inscribed in triangles $A E F, D J K$, and the triangle formed by the new square, square $H I J K$, and segment $A B$. The radius of the circle inscribed in triangle $D J K$ (the middle-sized one) is the geometric mean of the radii of the other two circles.

Also solved by Joe Howard, Portales, New Mexico; Joseph Dence, University of Missouri - St. Louis, St. Louis, Missouri; Ovidiu Furdui, Western Michigan University, Kalamazoo, Michigan; Alan H. Rapoport, Santurce, Puerto Rico (4 solutions); and the proposer.
135. [2001,207] Proposed by José Luis Díaz, Universidad Politécnica de Cataluña, Barcelona, Spain.

Let $z_{0}, z_{1}, \ldots, z_{n}$ be $n+1$ complex numbers lying in the closed left half plane $\operatorname{Re}(z) \leq 0$. Prove that

$$
\sum_{k=0}^{n}\binom{n}{k}\left\{\frac{\left|1-z_{k}\right|}{1+\left|z_{k}\right|}\right\}^{2} \geq 2^{n-1}
$$

When does equality occur?
Solution by Joseph B. Dence, University of Missouri - St. Louis, St. Louis, Missouri.

Since $\left|\operatorname{Re}\left(z_{k}\right)\right| \leq\left|z_{k}\right|$, then by hypothesis $-\operatorname{Re}\left(z_{k}\right) \leq\left|z_{k}\right|$ and $\left|1-z_{k}\right|^{2}=$ $1-2 \operatorname{Re}\left(z_{k}\right)+\left|z_{k}\right|^{2} \leq 1+2\left|z_{k}\right|+\left|z_{k}\right|^{2}=\left\{1+\left|z_{k}\right|\right\}^{2}$. So for each $k$

$$
0 \leq\left\{\frac{\left|1-z_{k}\right|}{1+\left|z_{k}\right|}\right\}^{2} \leq 1
$$

and

$$
\sum_{k=0}^{n}\binom{n}{k}\left\{\frac{\left|1-z_{k}\right|}{1+\left|z_{k}\right|}\right\}^{2} \leq \sum_{k=0}^{n}\binom{n}{k}=2^{n}
$$

On the other hand, letting $z_{k}=r_{k} e^{i \phi_{k}}$, we have

$$
\left\{\frac{\left|1-z_{k}\right|}{1+\left|z_{k}\right|}\right\}^{2}=\frac{1+r_{k}^{2}-2 r_{k} \cos \phi_{k}}{1+2 r_{k}+r_{k}^{2}}, \quad \frac{\pi}{2} \leq \phi_{k} \leq \frac{3 \pi}{2}
$$

Clearly, the left-hand side is minimized at $\phi_{k}=\frac{\pi}{2}, \frac{3 \pi}{2}$ and for some $r_{k}$. Let $f\left(r_{k}\right)=$ $\left(1+r_{k}^{2}\right) /\left(1+2 r_{k}+r_{k}^{2}\right)$; then $f^{\prime}\left(r_{k}\right)=0$ implies $r_{k}=1$. Further, $f^{\prime \prime}(1)=1 / 16>0$, so $r_{k}=1$ corresponds to a minimum. Hence, for each $k$

$$
\left\{\frac{1+r_{k}^{2}-2 r_{k} \cos \phi_{k}}{1+2 r_{k}+r_{k}^{2}}\right\} \geq \frac{1+1^{2}-0}{1+2+1^{2}}=\frac{1}{2}
$$

and finally,

$$
\sum_{k=0}^{n}\binom{n}{k}\left\{\frac{\left.\left|1-z_{k}\right|\right\}^{2}}{1+\left|z_{k}\right|}\right\}^{2} \geq \sum_{k=0}^{n}\binom{n}{k}\left(\frac{1}{2}\right)=2^{n} \cdot \frac{1}{2}=2^{n-1}
$$

Equality occurs when each $z_{k} \in\{i,-i\}$.
Also solved by Ovidiu Furdui, Western Michigan University, Kalamazoo, Michigan and the proposer.
136. [2001,207] Proposed by Kenneth B. Davenport, 301 Morea Road, Frackville, Pennsylvania.

Show that if

$$
\begin{array}{ll}
A=\sum_{n=0}^{\infty}\left(\frac{1}{15 n+1}-\frac{1}{15 n+6}\right), & B=\sum_{n=0}^{\infty}\left(\frac{1}{15 n+9}-\frac{1}{15 n+14}\right), \\
C=\sum_{n=0}^{\infty}\left(\frac{1}{15 n+2}-\frac{1}{15 n+7}\right), & D=\sum_{n=0}^{\infty}\left(\frac{1}{15 n+8}-\frac{1}{15 n+13}\right), \\
E=\sum_{n=0}^{\infty}\left(\frac{1}{15 n+4}-\frac{1}{15 n+9}\right), & F=\sum_{n=0}^{\infty}\left(\frac{1}{15 n+6}-\frac{1}{15 n+11}\right),
\end{array}
$$

then $A+B=(C+D)+(E+F) \beta$, where $\beta=2 \cos (2 \pi / 15)$.
Solution by Ovidiu Furdui, Western Michigan University, Kalamazoo, Michigan. I will make use of the following formulae:

$$
\begin{equation*}
\Psi(z)-\Psi(1-z)=-\pi \cot \pi z \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\Psi(z+1)=-\gamma-\sum_{n=1}^{\infty}\left(\frac{1}{z+n}-\frac{1}{n}\right) ; \quad z \neq-1,-2,-3, \ldots \tag{**}
\end{equation*}
$$

where $\gamma$ is the Euler constant and

$$
\Psi(z)=\frac{d}{d z} \ln \Gamma(z)=\frac{\Gamma^{\prime}(z)}{\Gamma(z)}
$$

Notice that

$$
\begin{equation*}
A--\frac{1}{15} \Psi\left(\frac{1}{15}\right)+\frac{1}{15} \Psi\left(\frac{2}{5}\right) \tag{*}
\end{equation*}
$$

I used MAPLE to find $A$ but I can also provide an algebraic explanation for the above formula (at the end of the problem). So we get that:

$$
\begin{aligned}
& A=-\frac{1}{15} \Psi\left(\frac{1}{15}\right)+\frac{1}{15} \Psi\left(\frac{2}{5}\right), \quad B=-\frac{1}{15} \Psi\left(\frac{3}{5}\right)+\frac{1}{15} \Psi\left(\frac{14}{15}\right) \\
& C=-\frac{1}{15} \Psi\left(\frac{2}{15}\right)+\frac{1}{15} \Psi\left(\frac{7}{15}\right), \quad D=-\frac{1}{15} \Psi\left(\frac{8}{15}\right)+\frac{1}{15} \Psi\left(\frac{13}{15}\right) \\
& E=-\frac{1}{15} \Psi\left(\frac{4}{15}\right)+\frac{1}{15} \Psi\left(\frac{3}{5}\right), \quad F=-\frac{1}{15} \Psi\left(\frac{2}{5}\right)+\frac{1}{15} \Psi\left(\frac{11}{15}\right) \\
& A+B=\frac{1}{15}\left[\Psi\left(\frac{2}{5}\right)-\Psi\left(\frac{3}{5}\right)\right]+\frac{1}{15}\left[\Psi\left(\frac{14}{15}\right)-\Psi\left(\frac{1}{15}\right)\right]
\end{aligned}
$$

and according to (1) we get

$$
\begin{aligned}
& A+B=-\frac{\pi}{15} \cdot \cot \frac{2 \pi}{5}+\frac{-\pi}{15} \cot \frac{14 \pi}{15} \\
& =-\frac{\pi}{15} \cdot\left(\cot \frac{2 \pi}{5}+\cot \frac{14 \pi}{15}\right)=-\frac{\pi}{15}\left(\cot \frac{6 \pi}{15}+\cot \frac{14 \pi}{15}\right) \\
& =\frac{2 \pi}{5}=\frac{6 \pi}{15}=-\frac{\pi}{15} \cdot \frac{\sin \frac{20 \pi}{15}}{\sin \frac{6 \pi}{15} \cdot \sin \frac{14 \pi}{15}}=-\frac{\pi}{15} \cdot \frac{\sin \frac{4 \pi}{3}}{\sin \frac{2 \pi}{5} \sin \frac{14 \pi}{15}}
\end{aligned}
$$

But

$$
\sin \frac{4 \pi}{3}=-\sin \frac{\pi}{3} \text { and } \sin \frac{14 \pi}{15}=\sin \frac{\pi}{15}
$$

so we obtain that

$$
\begin{equation*}
A+B=\frac{\pi}{15} \cdot \frac{\sin \frac{\pi}{3}}{\sin \frac{2 \pi}{5} \cdot \sin \frac{\pi}{15}} \tag{2}
\end{equation*}
$$

Analogously,

$$
C+D=\frac{\pi}{15} \cdot \frac{\sin \frac{\pi}{3}}{\sin \frac{7 \pi}{15} \cdot \sin \frac{2 \pi}{15}} \text { and } E+F=\frac{\pi}{15} \cdot \frac{\sin \frac{\pi}{3}}{\sin \frac{3 \pi}{5} \cdot \sin \frac{4 \pi}{15}}
$$

so

$$
\begin{aligned}
& C+D+\beta(E+F)=C+D+2 \cos \frac{2 \pi}{15}(E+F) \\
& =\frac{\pi}{15} \cdot \frac{\sin \frac{\pi}{3}}{\sin \frac{7 \pi}{15} \cdot \sin \frac{2 \pi}{15}}+2 \cos \frac{2 \pi}{15} \cdot \frac{\pi}{15} \cdot \frac{\sin \frac{\pi}{3}}{\sin \frac{3 \pi}{5} \cdot \sin \frac{4 \pi}{15}}
\end{aligned}
$$

But

$$
\sin \frac{4 \pi}{15}=2 \sin \frac{2 \pi}{15} \cos \frac{2 \pi}{15}
$$

so

$$
\begin{aligned}
& C+D+\beta(E+F)=\frac{\pi}{15} \cdot \sin \frac{\pi}{3}\left[\frac{1}{\sin \frac{7 \pi}{15} \sin \frac{2 \pi}{15}}+\frac{1}{\sin \frac{3 \pi}{15} \sin \frac{2 \pi}{15}}\right] \\
& =\frac{\pi}{15} \frac{\sin \frac{\pi}{3}}{\sin \frac{2 \pi}{15}} \cdot \frac{\sin \frac{3 \pi}{5}+\sin \frac{7 \pi}{15}}{\sin \frac{3 \pi}{5} \sin \frac{7 \pi}{15}}
\end{aligned}
$$

But

$$
\sin a+\sin b=2 \sin \frac{a+b}{2} \cos \frac{a-b}{2}
$$

so

$$
\sin \frac{3 \pi}{5}+\sin \frac{7 \pi}{15}=\sin \frac{9 \pi}{15}+\sin \frac{7 \pi}{15}=2 \sin \frac{8 \pi}{15} \cdot \cos \frac{\pi}{15}
$$

Thus,

$$
C+D+\beta(E+F)=\frac{\pi}{15} \cdot \frac{\sin \frac{\pi}{3}}{\sin \frac{2 \pi}{15}} \cdot \frac{2 \sin \frac{8 \pi}{15} \cos \frac{\pi}{15}}{\sin \frac{3 \pi}{5} \sin \frac{7 \pi}{15}}
$$

But

$$
\sin \frac{2 \pi}{5}=2 \sin \frac{\pi}{5} \cos \frac{\pi}{5} \quad ; \quad \sin \frac{8 \pi}{15}=\sin \frac{7 \pi}{15}
$$

so

$$
\begin{equation*}
C+D+\beta(E+F)=\frac{\pi}{15} \cdot \frac{\sin \frac{\pi}{3}}{\sin \frac{\pi}{15} \sin \frac{3 \pi}{5}} \tag{3}
\end{equation*}
$$

From (2) and (3) and the fact that

$$
\sin \frac{3 \pi}{5}=\sin \frac{2 \pi}{5}
$$

the result follows.
To explain (*), we note that

$$
A=\sum_{n=0}^{\infty}\left(\frac{1}{15 n+1}-\frac{1}{15 n+6}\right)=-\frac{1}{15} \Psi\left(\frac{1}{15}\right)+\frac{1}{15} \Psi\left(\frac{2}{5}\right)
$$

From first using $\left({ }^{* *}\right)$ and later letting $n-1=k$, we observe that

$$
\begin{aligned}
& \Psi\left(\frac{1}{15}\right)=\Psi\left(1-\frac{14}{15}\right)=-\gamma-\sum_{n=1}^{\infty}\left(\frac{1}{n-\frac{14}{15}}-\frac{1}{n}\right) \\
& =-\gamma-\sum_{n=1}^{\infty}\left(\frac{15}{15 n-14}-\frac{1}{n}\right)=-\gamma-\sum_{n=1}^{\infty}\left(\frac{15}{15(n-1)+1}-\frac{1}{n}\right) \\
& =-\gamma-\sum_{k=0}^{\infty}\left(\frac{15}{15 k+1}-\frac{1}{k+1}\right)
\end{aligned}
$$

Also,

$$
\begin{aligned}
& \Psi\left(\frac{2}{15}\right)=\Psi\left(\frac{6}{15}\right)=\Psi\left(1-\frac{9}{15}\right)=-\gamma-\sum_{n=1}^{\infty}\left(\frac{1}{n-\frac{9}{15}}-\frac{1}{n}\right) \\
& =-\gamma-\sum_{n \geq 1}\left(\frac{15}{15 n-9}-\frac{1}{n}\right)=-\gamma-\sum_{k=0}^{\infty}\left(\frac{15}{15 k+6}-\frac{1}{k+1}\right)
\end{aligned}
$$

Observe that

$$
\begin{aligned}
& 15 A=15 \cdot \lim _{n \rightarrow \infty} \sum_{k=0}^{n}\left(\frac{1}{15 k+1}-\frac{1}{15 k+6}\right) \\
& =\lim _{n \rightarrow \infty} \sum_{k=0}^{n}\left(\frac{15}{15 k+1}-\frac{1}{k+1}+\frac{1}{k+1}-\frac{15}{15 k+6}\right) \\
& =\lim _{n \rightarrow \infty}\left\{\left[-\gamma-\sum_{k=0}^{n}\left(\frac{15}{15 k+6}-\frac{1}{k+1}\right)\right]-\left[-\gamma-\sum_{k=0}^{n}\left(\frac{15}{15 k+1}-\frac{1}{k+1}\right)\right]\right\} \\
& =-\gamma-\lim _{n \rightarrow \infty} \sum_{k=0}^{n}\left(\frac{15}{15 k+6}-\frac{1}{k+1}\right)-\left[-\gamma-\lim _{n \rightarrow \infty} \sum_{k=0}^{n}\left(\frac{15}{15 k+1}-\frac{1}{k+1}\right)\right] \\
& =\Psi\left(\frac{2}{5}\right)-\Psi\left(\frac{1}{15}\right)
\end{aligned}
$$

Therefore,

$$
15 A=\Psi\left(\frac{2}{5}\right)-\Psi\left(\frac{1}{15}\right)
$$

We can analogously obtain the values of $B, C, D, E$, and $F$.
Also solved by the proposer.

