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SOLUTIONS

No problem is ever permanently closed. Any comments, new solutions, or new
insights on old problems are always welcomed by the problem editor.

21. [1990, 80; 1991, 95] Proposed by Stanley Rabinowitz, Westford, Mass-
achusetts.

Find distinct positive integers, a, b, c, d such that

a+ b+ c+ d+ abcd = ab+ bc+ ca+ ad+ bd+ cd+ abc+ abd+ acd+ bcd.

Solution by Les Reid, Southwest Missouri State University, Springfield,
Missouri.

More generally, we will find all positive integer solutions to

a+ b+ c+ d+ abcd = abc+ abd+ acd+ bcd+ ab+ ac+ ad+ bc+ bd+ cd.

Rewriting as

abcd− abc− abd− acd− bcd− ab− ac− ad− bc− cd+ a+ b+ c+ d = 0

and noting that the left-hand side has the opposite parity of (a−1)(b−1)(c−1)(d−1)
[since their difference is 2(ab+ ac+ ad+ bc+ bd+ cd− a− b − c− d) + 1], we see
that (a− 1)(b− 1)(c− 1)(d− 1) must be odd, hence a, b, c, and d must all be even.

Since our original equation is symmetric in the variables, we may assume without
loss of generality that 0 < d ≤ c ≤ b ≤ a.

If d = 2 and c = 2, our equation is equivalent to ab + 7a + 7b = 0 which has no
positive solutions.

If d = 2 and c = 4, our equation may be rewritten as (a− 13)(b− 13) = 171. Since
171 can be factored as 171 · 1, 57 · 3, 19 · 9, we obtain the solutions a = 184, b = 14;
a = 70, b = 16; a = 32, b = 22.

If d = 2 and c = 6, our equation may be rewritten as (3a−19)(3b−19) = 373. Since
373 is prime, the only possible factorization is as 373 · 1, but this yields non-integer
values for a and b.

If d = 2 and c = 8, our equation becomes 5ab − 25a − 25b = 6, which is clearly
impossible since the left-hand side is not divisible by 5.
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If d = 2 and c ≥ 10, then

abcd− abc− abd− acd− bcd− ab−ac− ad− bc− bd− cd+ a+ b+ c+ d =

abc− 3ab− 3ac− 3bc− a− b− c+ 2 ≥ 10ab− 3ab− 3ab− 3ab− a− b− b+ 2 =

ab− a− 2b+ 2 = (a− 2)(b − 1) > 0

so there are no further solutions when d = 2.

If d = 4 and c = 4, our equation may be rewritten as (7a − 23)(7b − 23) = 585.
The only factorization of 585 whose factors are both congruent to −23 ≡ 5 mod 7
is 117 · 5, which yields a = 20, b = 4.

If d = 4 and c ≥ 6, then

abcd− abc− abd− acd− bcd−ab− ac− ad− bc− bd− cd+ a+ b+ c+ d

= 3abc− 5ab− 5ac− 5bc− 3a− 3b− 3c+ 4

≥ 18ab− 5ab− 5ab− 5ab− 3a− 3b− 3b+ 4

= 3ab− 3a− 6b+ 4

= 3(a− 2)(b− 1)− 2 ≥ 3 · 4 · 5− 2 > 0.

If d ≥ 6, then

abcd− abc− abd− acd− bcd− ab− ac− ad− bc− bd− cd+ a+ b+ c+ d ≥

6abc− abc− abc− abc− abc− ab− ac− ab− bc− ab− bc+ a+ b+ c+ 6 =

2abc− 3ab− 2bc− ac+ a+ b+ c+ 6 ≥ 12ab− 3ab− 2ab− ab+ a+ b+ 6 + 6 =

6ab+ a+ b+ 12 > 0

so there are no more positive solutions.

Therefore, the only positive solutions of our equation (up to reordering) are

a = 184, b = 14, c = 4, d = 2

a = 70, b = 16, c = 4, d = 2

a = 32, b = 22, c = 4, d = 2

a = 20, b = 4, c = 4, d = 4.
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133. [2001,206] Proposed by José Luis Díaz, Universidad Politécnica de
Cataluña, Barcelona, Spain.

Let n be a positive integer. Show that

n
∑

k=1

k

log
(

1 + 1
k

) <
n2(n+ 2)

2
.

Here, log denotes the natural logarithm.

Solution by Joe Howard, Portales, New Mexico and Ovidiu Furdui, Western
Michigan University, Kalamazoo, Michigan. We use the Logarithmic-Arithmetic
Mean inequality, which says that for a > b > 0,

a− b

log a− log b
<

a+ b

2
.

Since

log

(

1 +
1

k

)

= log(k + 1)− log k,

we have

1

log(k + 1)− log k
<

2k + 1

2
.

Multiplying by k > 0 it follows that

n
∑

k=1

k

log(1 + 1
k
)
<

n
∑

k=1

k2 +
1

2

n
∑

k=1

k

=
n(n+ 1)(2n+ 1)

6
+

n(n+ 1)

4
=

n(n+ 1)(4n+ 5)

12
.

Note that

n(n+ 1)(4n+ 5)

12
≤

n2(n+ 2)

2
for n ≥ 1,
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since

4n2 + 9n+ 5 ≤ 6n2 + 12n if and only if 5 ≤ 2n2 + 3n for n ≥ 1.

Also solved by Les Reid, Southwest Missouri State University, Springfield,
Missouri; J. D. Chow, Edinburg, Texas; Joseph Dence, University of Missouri-
St. Louis, St. Louis, Missouri; Craig Haile, College of the Ozarks, Point Lookout,
Missouri; Alan H. Rapoport, Santurce, Puerto Rico; Joe Howard, Portales, New
Mexico (2 solutions); and the proposer.

Les Reid’s solution, in addition to giving the stronger upper bound in the fea-
tured solution, gave a lower bound for the sum, i.e.,

n(4n2 + 9n+ 4)

12
<

n
∑

k=1

k

log
(

1 + 1
k

) for n ≥ 1.

134. [2001,206] Proposed by Larry Hoehn, Austin Peay State University,
Clarksville, Tennessee.

Let square DEFG be inscribed in right triangle ABC, square HIJK be inscribed
in triangle GBD, and square LMNP be inscribed in triangle AFE as shown in the
figure. Prove or disprove that KG = LF.

Solution I by Clayton W. Dodge, University of Maine, Orono, Maine. Clearly,
all the right triangles and their inscribed squares are similar, so that corresponding
parts are proportional. In particular, MN/EA = IJ/BD. Also, KG/KH =
DG/BD and LF/LP = EF/EA. Then we have

LF =
EF · LP

EA
= DG ·

MN

EA
= DG ·

IJ

BD
=

DG ·KH

BD
= KG.
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Solution II by Leon Hall, University of Missouri - Rolla, Rolla, Missouri.

Let a = BC, b = AC, c = AB, a1 = CD, b1 = CE, and s = FG. Then from
similar triangles,

a1
a

=
b1
b

=
s

c

and

KG

DG
=

KG

s
=

b1
b

so KG =
s2

c
,

LF

EF
=

LF

s
=

a1
a

so LF =
s2

c
,

and thus, KG = LF .

Leon Hall also had several remarks regarding the problem.

Remark 1. There is a third length also equal to KG and LF . Inscribe square
QRST in triangle CDE as shown in the figure. Then

QT

s
=

s

c
so QT =

s2

c
.
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Remark 2. There ought to be some relationship(s) between the three small
squares, and there is. Let s1 = HK, s2 = LP , and s3 = QT . Then, again using
similar figures,

s1
s

=
s

b
,

s2
s

=
s

a
, and

s3
s

=
s

c
.

This leads to the relationships

bs1 = as2 = cs3 = s2

and

1

s21
+

1

s22
=

1

s23
.

Remark 3. Now disregard the three small squares and consider the three tri-
angles CDE, BDG, and AEF , together with square DEFG. If the areas of the
triangles are denoted T1, T2, and T3 respectively, then some more similar triangle
work gives

T1 =
abs2

2c2
, T2 =

as2

2b
, T3 =

bs2

2a
.

From these it follows that

s2

2
=

√

T1(T2 + T3),

or, in words, half the area of square DEFG is the geometric mean of the area of
triangle CDE and the sum of the areas of triangles BDG and AEF .

Remark 4. This problem is similar to one of the problems in the May 1998 Sci-
entific American article, “Japanese Temple Geometry”, by Tony Rothman. There,
squares LMNP and QRST are not drawn, and a new square is inscribed in tri-
angle BHI. Then circles are inscribed in triangles AEF , DJK, and the triangle
formed by the new square, square HIJK, and segment AB. The radius of the
circle inscribed in triangle DJK (the middle-sized one) is the geometric mean of
the radii of the other two circles.

Also solved by Joe Howard, Portales, New Mexico; Joseph Dence, University
of Missouri - St. Louis, St. Louis, Missouri; Ovidiu Furdui, Western Michigan
University, Kalamazoo, Michigan; Alan H. Rapoport, Santurce, Puerto Rico (4
solutions); and the proposer.
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135. [2001,207] Proposed by José Luis Díaz, Universidad Politécnica de
Cataluña, Barcelona, Spain.

Let z0, z1, . . . , zn be n+ 1 complex numbers lying in the closed left half plane
Re(z) ≤ 0. Prove that

n
∑

k=0

(

n

k

){

|1− zk|

1 + |zk|

}2

≥ 2n−1.

When does equality occur?

Solution by Joseph B. Dence, University of Missouri - St. Louis, St. Louis,
Missouri.

Since |Re(zk)| ≤ |zk|, then by hypothesis −Re(zk) ≤ |zk| and |1 − zk|
2 =

1− 2Re(zk) + |zk|
2 ≤ 1 + 2|zk|+ |zk|

2 = {1 + |zk|}
2. So for each k

0 ≤

{

|1− zk|

1 + |zk|

}2

≤ 1,

and

n
∑

k=0

(

n

k

){

|1− zk|

1 + |zk|

}2

≤

n
∑

k=0

(

n

k

)

= 2n.

On the other hand, letting zk = rke
iφk , we have

{

|1− zk|

1 + |zk|

}2

=
1+ r2k − 2rk cosφk

1 + 2rk + r2k
,

π

2
≤ φk ≤

3π

2
.

Clearly, the left-hand side is minimized at φk = π
2
, 3π

2
and for some rk. Let f(rk) =

(1+ r2k)/(1 + 2rk + r2k); then f ′(rk) = 0 implies rk = 1. Further, f ′′(1) = 1/16 > 0,
so rk = 1 corresponds to a minimum. Hence, for each k

{

1 + r2k − 2rk cosφk

1 + 2rk + r2k

}

≥
1 + 12 − 0

1 + 2 + 12
=

1

2
,
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and finally,

n
∑

k=0

(

n

k

){

|1− zk|

1 + |zk|

}2

≥

n
∑

k=0

(

n

k

)(

1

2

)

= 2n ·
1

2
= 2n−1.

Equality occurs when each zk ∈ {i,−i}.

Also solved by Ovidiu Furdui, Western Michigan University, Kalamazoo,
Michigan and the proposer.

136. [2001,207] Proposed by Kenneth B. Davenport, 301 Morea Road,
Frackville, Pennsylvania.

Show that if

A =

∞
∑

n=0

(

1

15n+ 1
−

1

15n+ 6

)

, B =

∞
∑

n=0

(

1

15n+ 9
−

1

15n+ 14

)

,

C =

∞
∑

n=0

(

1

15n+ 2
−

1

15n+ 7

)

, D =

∞
∑

n=0

(

1

15n+ 8
−

1

15n+ 13

)

,

E =

∞
∑

n=0

(

1

15n+ 4
−

1

15n+ 9

)

, F =

∞
∑

n=0

(

1

15n+ 6
−

1

15n+ 11

)

,

then A+B = (C +D) + (E + F )β, where β = 2 cos(2π/15).

Solution by Ovidiu Furdui, Western Michigan University, Kalamazoo, Michi-
gan. I will make use of the following formulae:

Ψ(z)−Ψ(1− z) = −π cotπz. (1)

and

Ψ(z + 1) = −γ −

∞
∑

n=1

(

1

z + n
−

1

n

)

; z 6= −1,−2,−3, . . . , (∗∗)
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where γ is the Euler constant and

Ψ(z) =
d

dz
ln Γ(z) =

Γ′(z)

Γ(z)
;

Notice that

A−−
1

15
Ψ

(

1

15

)

+
1

15
Ψ

(

2

5

)

(∗)

I used MAPLE to find A but I can also provide an algebraic explanation for the
above formula (at the end of the problem). So we get that:

A = −
1

15
Ψ

(

1

15

)

+
1

15
Ψ

(

2

5

)

, B = −
1

15
Ψ

(

3

5

)

+
1

15
Ψ

(

14

15

)

,

C = −
1

15
Ψ

(

2

15

)

+
1

15
Ψ

(

7

15

)

, D = −
1

15
Ψ

(

8

15

)

+
1

15
Ψ

(

13

15

)

,

E = −
1

15
Ψ

(

4

15

)

+
1

15
Ψ

(

3

5

)

, F = −
1

15
Ψ

(

2

5

)

+
1

15
Ψ

(

11

15

)

,

A+B =
1

15

[

Ψ

(

2

5

)

−Ψ

(

3

5

)]

+
1

15

[

Ψ

(

14

15

)

−Ψ

(

1

15

)]

,

and according to (1) we get

A+B = −
π

15
· cot

2π

5
+

−π

15
cot

14π

15

= −
π

15
·

(

cot
2π

5
+ cot

14π

15

)

= −
π

15

(

cot
6π

15
+ cot

14π

15

)

=
2π

5
=

6π

15
= −

π

15
·

sin 20π
15

sin 6π
15

· sin 14π
15

= −
π

15
·

sin 4π
3

sin 2π
5
sin 14π

15

.
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But

sin
4π

3
= − sin

π

3
and sin

14π

15
= sin

π

15
,

so we obtain that

A+B =
π

15
·

sin π
3

sin 2π
5
· sin π

15

. (2)

Analogously,

C +D =
π

15
·

sin π
3

sin 7π
15

· sin 2π
15

and E + F =
π

15
·

sin π
3

sin 3π
5
· sin 4π

15

,

so

C +D + β(E + F ) = C +D + 2 cos
2π

15
(E + F )

=
π

15
·

sin π
3

sin 7π
15

· sin 2π
15

+ 2 cos
2π

15
·
π

15
·

sin π
3

sin 3π
5
· sin 4π

15

.

But

sin
4π

15
= 2 sin

2π

15
cos

2π

15
,

so

C +D + β(E + F ) =
π

15
· sin

π

3

[

1

sin 7π
15

sin 2π
15

+
1

sin 3π
15

sin 2π
15

]

=
π

15

sin π
3

sin 2π
15

·
sin 3π

5
+ sin 7π

15

sin 3π
5
sin 7π

15

.

But

sin a+ sin b = 2 sin
a+ b

2
cos

a− b

2
,
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so

sin
3π

5
+ sin

7π

15
= sin

9π

15
+ sin

7π

15
= 2 sin

8π

15
· cos

π

15
.

Thus,

C +D + β(E + F ) =
π

15
·
sin π

3

sin 2π
15

·
2 sin 8π

15
cos π

15

sin 3π
5
sin 7π

15

.

But

sin
2π

5
= 2 sin

π

5
cos

π

5
; sin

8π

15
= sin

7π

15
,

so

C +D + β(E + F ) =
π

15
·

sin π
3

sin π
15

sin 3π
5

. (3)

From (2) and (3) and the fact that

sin
3π

5
= sin

2π

5
,

the result follows.

To explain (*), we note that

A =

∞
∑

n=0

(

1

15n+ 1
−

1

15n+ 6

)

= −
1

15
Ψ

(

1

15

)

+
1

15
Ψ

(

2

5

)

.

From first using (**) and later letting n− 1 = k, we observe that

Ψ

(

1

15

)

= Ψ

(

1−
14

15

)

= −γ −

∞
∑

n=1

(

1

n− 14
15

−
1

n

)

= −γ −
∞
∑

n=1

(

15

15n− 14
−

1

n

)

= −γ −
∞
∑

n=1

(

15

15(n− 1) + 1
−

1

n

)

= −γ −
∞
∑

k=0

(

15

15k + 1
−

1

k + 1

)

.



VOLUME 14, NUMBER 3, FALL 2002 223

Also,

Ψ

(

2

15

)

= Ψ

(

6

15

)

= Ψ

(

1−
9

15

)

= −γ −

∞
∑

n=1

(

1

n− 9
15

−
1

n

)

= −γ −
∑

n≥1

(

15

15n− 9
−

1

n

)

= −γ −

∞
∑

k=0

(

15

15k + 6
−

1

k + 1

)

.

Observe that

15A = 15 · lim
n→∞

n
∑

k=0

(

1

15k + 1
−

1

15k + 6

)

= lim
n→∞

n
∑

k=0

(

15

15k + 1
−

1

k + 1
+

1

k + 1
−

15

15k + 6

)

= lim
n→∞

{[

− γ −

n
∑

k=0

(

15

15k + 6
−

1

k + 1

)]

−

[

− γ −

n
∑

k=0

(

15

15k + 1
−

1

k + 1

)]}

= −γ − lim
n→∞

n
∑

k=0

(

15

15k + 6
−

1

k + 1

)

−

[

− γ − lim
n→∞

n
∑

k=0

(

15

15k + 1
−

1

k + 1

)]

= Ψ

(

2

5

)

−Ψ

(

1

15

)

.

Therefore,

15A = Ψ

(

2

5

)

−Ψ

(

1

15

)

.

We can analogously obtain the values of B, C, D, E, and F .

Also solved by the proposer.


