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A GEOMETRIC INTERPRETATION OF 2× 2

MARKOV TRANSITION MATRICES

P. H. Brill and M. Hlynka

Abstract. By creating a geometric interpretation for 2 × 2 Markov chain

transition matrices, we obtain a simple graphical method for finding the limiting

probability vector. As a bonus, the interpretation gives a geometric method for

finding powers and roots of transition matrices.

1. Introduction. How would you find a “square root” of the matrix

P =

[

.8 .2

.3 .7

]

if you were not allowed to use eigenvalues and eigenvectors? If you wanted to

construct two (different) matrices that commute, how would you do so, if diagonal

matrices were not allowed? If you wanted to find a 2× 2 matrix A, not equal to I,

such that A2 = A, how would you proceed? These questions have easy answers. We

will answer them using a geometric interpretation of 2× 2 Markov chain transition

matrices.

The study of Markov chains is often included in an applications section of a

linear algebra text. For example, see Nicholson [3] and Norman [4]. Markov chains

have many uses. For example, two state Markov chains are useful in systems with

only ON/OFF states. Also, 2 × 2 Markov transition matrices can be helpful for

understanding results involving n× n Markov transition matrices.

Let P = [pij ] be an n×n transition matrix where pij represents the probability

of moving to state j on the next step given that the system is currently in state i.

In what follows, we will talk about irreducible aperiodic Markov chains. Markov

chains having transition matrices with all nonzero entries form a subset of those

chains, so anyone unfamiliar with such terminology can focus on matrices with all

nonzero entries.

For irreducible aperiodic Markov chains, it is well-known that the limiting

probability of being in state i on the nth step, denoted by vi = limn→∞ p
(n)
i ,

exists and does not depend on the initial state probabilities. Let v be the limiting
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probability (row) vector. For such Markov chains, with a finite number of states, v

can be found by solving

v = vP subject to
∑

i

vi = 1, 0 ≤ vi ≤ 1. (1)

It can also be found as any row v of

lim
n→∞

Pn (2)

where Pn is the nth power of P .

One of the most frequently asked questions for Markov chains is, “Given a

transition matrix, what is the limiting probability vector?” Algebraic solutions are

given by solving (1) in the previous paragraph. An important but less frequently

asked question is, “Given a limiting probability vector, what is the corresponding

set of transition matrices?” In this paper, both questions will be answered for 2×2

matrices, via a novel geometric interpretation.

2. Transition Matrices and Limiting Vectors. Because transition matrix

entries are probabilities and the rows must sum to 1, any 2× 2 transition matrix

P =

[

x 1− x
y 1− y

]

can be represented by the point [x, y] in the unit square bounded by [0, 0], [1, 0],

[1, 1], and [0, 1]. Square parentheses [∗, ∗] will be used to represent such a matrix,

and round parentheses (∗, ∗) will be reserved for limiting probability vectors of the

Markov chain. It is very fortunate that four dimensional 2 × 2 matrices can be

reduced to a two dimensional vector by adding the constraint on the row sums of

the matrix.

The matrices represented on the sides of the unit square [x, 0], [1, y], [x, 1], [0, y]

include transition matrices for Markov chains which are periodic or have absorbing

states, or are not irreducible. These are special cases. All points [x, y] strictly

within the unit square represent transition matrices of irreducible aperiodic Markov

chains. Unless otherwise stated, only irreducible aperiodic Markov chains are being

considered.
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We first solve the problem of finding all transition matrices with a given limiting

vector.

Property. Let v = (a, 1 − a) be a known probability vector, with 0 < a < 1.

For 0 < x < 1, 0 < y < 1, let the transition matrix

P =

[

x 1− x
y 1− y

]

be represented by [x, y]. Then the set of 2 × 2 transition matrices P having v as

the limiting vector, when represented in R
2, form a straight line through the points

[1, 0], [a, a], and [0, a/(1− a)].

Proof. From (1), solving v = vP yields

a = ax+ (1− a)y (3)

1− a = a(1− x) + (1 − a)(1− y).

The second equation is redundant. The first equation represents a straight line,

containing the points [1, 0], [a, a], and [0, a/(1− a)].

Each value of a corresponds to a line through the points [1, 0] and [a, a] repre-

senting matrices with limiting vector (a, 1− a). In Diagram 1, (3) is plotted in R
2
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for a = 1/3, 1/2, 2/3.

Diagram 1

Now, instead of finding the collection of matrices with a given limiting vector,

we reverse the procedure to find geometrically the limiting vector for a given matrix.
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Finding the Limiting Vector. For 0 < x < 1, 0 < y < 1, let

P =

[

x 1− x
y 1− y

]

be represented by [x, y]. Let the limiting vector be v = (a, 1 − a) for some a. By

(2), the limiting matrix must be [a, a]. Since the limiting matrix [a, a] is on the line

y = x, it can be found from the intersection of y = x with the line passing through

the points [1, 0] and [x, y].

Diagram 2 illustrates the technique for

P =

[

.8 .2

.3 .7

]

,

represented by the point [.8, .3]. The intersection point is [.6, .6], which represents

the limiting matrix

[

.6 .4

.6 .4

]
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so the limiting vector is v = (.6, .4).

Diagram 2

3. Convergence. An interesting geometric picture can be obtained of con-

vergence for transition matrices of two state Markov chains.

Let P , represented by [x, y], be a Markov transition matrix for a two state

irreducible aperiodic Markov chain. Then all positive integer powers of P are on

the straight line through [1, 0] and [x, y] and inside the unit square. To see this, let

v = (a, 1− a) be the limiting vector. Then v = vP . For n > 1, vPn = vP (Pn−1) =
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vPn−1 = · · · = v. So all positive integer powers of P have the same limiting vector

and must lie on the same straight line.

If the position of the point representing Pn, denoted by [xn, yn], is needed,

it is sufficient to determine xn, because the second coordinate can be determined

by knowing the point is on the straight line through [1, 0] and [x, y]. Equivalently

only the (1, 1) coefficient of the 2× 2 matrix Pn is needed. Denote xn by fn(x) to

emphasize that xn is some function of x.

Let the limiting vector for P be (a, 1 − a). It is easy to show that the (1, 1)

entry of Pn is

fn(x) = (x − a)n(1− a)1−n + a, (4)

which passes through the points [1, 1] and [a, a]. This expression for fn(x) can be

used to find the position of Pn in the unit square for any positive integer n.

Diagram 3 illustrates using the function f2(x). Here

P =

[

.8 .2

.1 .9

]

,

which is represented by the point [x, y] = [.8, .1]. Thus,

P 2 =

[

.66 .34

.17 .83

]

,

which is represented by the point [x2, y2] = [.66, .17]. The Y coordinate of the

quadratic f2(x) (at P ) is equal to the X coordinate of P 2. Continuing in this

manner,

P 4 =

[

.4934 .5066

.2533 .7467

]

.

These matrices are labeled in Diagram 3. Note that if a matrix P is selected,

then the powers of P along a straight line will give an idea of how fast or slow
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{Pn} converges to its limit. Careful initial choices of P can result in fast or slow

convergence.

Diagram 3
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In Diagram 4, both f2(x) and f3(x) are plotted, and the position of P 2 and

P 3 are indicated.

Diagram 4

In the appendix, a geometric method of multiplying any 2×2 transition matri-

ces with the same limiting probabilites, is given. This would give another method

of computing P 2 geometrically.
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Consider again the quadratic f2(x). It is interesting to note that by moving

backwards P 1/2 can be found using this geometric method (see Diagram 5).

Diagram 5

Two square roots are obtained – one to the left of the point (a, a) and one to

the right. Sometimes the point representing the square root matrix on the left is
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not in the unit square. In Diagram 5, take

P =

[

1/2 1/2
1/3 2/3

]

,

which is represented by the point [1/2, 1/3]. The two points representing square

roots of P are shown in the diagram. Label both of these as P .5. These square

root matrices represent transition matrices for Markov chains which have two step

transition probabilities which are the same as the one step transition probabilities

of the original Markov chain with transition matrix P !

Next, some additional properties are stated about the transition matrices rep-

resented by the straight line through [1, 0] and [a, a]. These are all easy to prove,

especially from the probabilistic viewpoint, and may be useful if one wishes to con-

struct matrices with certain given properties. These properties will answer some of

the questions posed in the first paragraph of the introduction.

1. The product of two matrices on the line will again be on that line.

2. Matrix multiplication of any two matrices on the line is commutative.

3. The inverse of a matrix which is on the line and strictly within the unit square,

is again on the line, but outside the unit square. Note that the inverse always

exists except for the matrices represented by [a, a]. The inverse must lie outside

the unit square since it is not a transition matrix. In Diagram 6, this is

illustrated with

P =

[

.1 .9

.6 .4

]

, P−1 =

[

−.8 1.8
1.2 −.2

]

, and P 2 =

[

.55 .45

.30 .70

]

.
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Diagram 6

4. Multiplying any matrix on the line by the matrix represented by [a, a] gives

the result [a, a].

5. Matrices of type [a, a] are idempotent (i.e. P 2 = P ), and no other 2 × 2

transition matrices (with all nonzero entries) are idempotent.

6. The limiting vector is (.5, .5) if and only if P is a symmetric matrix.

One advantage of the geometric approach is that some properties of transition

matrices become immediately recognizable. It is easy to see that very different

transition matrices may have the same limit. An example, apparent in the geometric

approach, would be the matrices

P1 =

[

.9 .1
.05 .95

]

and P2 =

[

.1 .9
.45 .55

]

,



VOLUME 14, NUMBER 3, FALL 2002 171

which both have limiting vector (1/3, 2/3). It is also possible to find matrices which

appear to be very close to each other but which have very different limiting vectors.

An example would be

P1 =

[

.990 .010

.005 .995

]

,

which has limiting vector (1/3, 2/3), and

P2 =

[

.995 .005

.010 .990

]

,

which has limiting vector (2/3, 1/3).

4. Conclusion. This paper has demonstrated how 2 × 2 Markov transition

matrices can be interpreted in a geometric manner, which provides insights and

aids in understanding Markov chains. In particular, the convergence of powers of

the transition matrix become simple motions in R
2. As a bonus, we have found

a method of obtaining square roots of transition matrices, identified a class of

idempotent matrices, and found some matrices which commute with each other.
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Appendix. A geometric method of computing P1P2 when P1 and P2 have the
same limiting vector.
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Description. Assume that P1 and P2 have the same limiting vector. Then their
“point” representations [a, b] and [c, d] lie on the same line L passing through [1, 0].

The product is

P1P2 =

[

ac+ (1− a)d ∗
∗ ∗

]

.

Note that ac+ (1− a)d is a convex combination of c and d. A construction to
locate ac+ (1 − a)d on the X axis is given. Then the point is projected vertically
to the line L. The result will be the point representation of P1P2. The construction
to find ac+ (1− a)d on the X axis is as follows.

1. Project [c, d] vertically to the X axis to obtain [c, 0].
2. Project [c, d] horizontally to [0, d] followed by a 45◦ motion to obtain the point

[d, 0].
3. Draw the two lines from [0, 1] to [d, 0] and from [1, 1] to [c, 0] and find their

intersection point.
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4. Draw the line connecting the intersection point from step 3 to the point [a, 1].
This line will intersect the X axis at the point [ac+(1−a)d, 0], as desired. See
Diagram 7.

Diagram 7

Note that this method of multiplying any two matrices with the same limiting
vector gives a second method of computing P 2. In addition, it gives a way of finding
any positive integral multiple of P without requiring the function fn(x) in (4).
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