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HOMOGENEOUS POLYNOMIALS AND THE

MINIMAL POLYNOMIAL OF COS(2π/n)

David Surowski and Paul McCombs

Abstract. It is well known that if Φn(x) is the nth cyclotomic polynomial,

then there is a factorization xn − 1 =
∏

Φd(x), where the product is taken over

the divisors d of n. Thus, one can obtain, by Möbius inversion, a product formula

for each Φn(x) in terms of the various factors xd − 1. The purpose of this note is

two-fold. First, we show that the above factorization implies a similar factorization

for the minimal polynomials of the algebraic numbers cos(2π/n), where n is a

positive integer. Secondly, we give an explicit formula for the minimal polynomials

of cos(2π/p), where p is prime.

Introduction. If ζ ∈ C is the primitive nth root of unity ζ = e2πi/n, and

if Φn(x) is the minimal polynomial of ζ, then it is well known that Φn(x) is a

monic polynomial with integer coefficients, has degree φ(n) (Euler φ-function), and

satisfies the identity

xn − 1 =
∏

d|n

Φd(x). (1)

From this, the cyclotomic polynomials can be computed via Möbius inversion:

Φn(x) =
∏

d|n

(xd − 1)µ(
n

d
), (2)

where for any integer k,

µ(k) =

{

(−1)l if k factors into l distinct primes,

0 if not.

In [3], W. Watkins and J. Zeitlin show that if Ψn(x) is the minimal polynomial of

cos(2π/n), then in analogy with equation (1) one has identities of the form

Ts+1(x)− Ts(x) = 2s
∏

d|n

Ψd(x) if n = 2s+ 1 is odd, (3)

Ts+1(x)− Ts−1(x) = 2s
∏

d|n

Ψd(x) if n = 2s is even. (4)
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In the above expressions, Ts(x) is the sth Chebyshev polynomial, defined by setting

Ts(cos θ) = cos sθ. Thus, one can, in principle, compute the polynomials Ψn(x)

using the Chebyshev polynomials and Möbius inversion.

In this note, we shall show first that equations (3) and (4) are not merely

analogs of equation (1), they are consequences of it. In the last section, we shall

give an explicit formula for the minimal polynomial of cos(2π/p), where p is prime.

This seems not to have been given in the literature.

1. Homogeneous Polynomials and Specialization. If D is an integral

domain and f(x) ∈ D[x] is a polynomial of degree k, we shall denote by f(x, y) ∈
D[x, y] the corresponding homogeneous polynomial, also of degree k. Thus, if

f(x) =
∑

aix
i, then f(x, y) =

∑

aix
iyk−i. Clearly, if f(x), g(x) ∈ D[x], and if

h(x) = f(x)g(x), then h(x, y) = f(x, y)g(x, y). This allows us to consider the

homogeneous version of equation (1):

xn − yn =
∏

d|n

Φd(x, y). (5)

Next, as the roots of Φn(x) consist of all of the primitive nth roots of unity, and

since these are closed under taking inverses, we see that if n > 1, the polynomial is

“palindromic” in the sense that if k = φ(n) and Φn(x) =
∑k

i=0 aix
i, then ai = ak−i,

i = 0, 1, . . . , k. If n > 2, then φ(n) is even: φ(n) = 2s, for some integer s. In this

case we set

Ln(x, y) =

s
∑

i=0

ai(x
i + yi)(

√
xy)s−i ∈ Z[x, y,

√
xy].

Note that since the polynomials xi + yi are symmetric in x and y, then by the

Fundamental Theorem on Symmetric Polynomials (FTSP) [1], xi + yi can be ex-

pressed as a polynomial in the “elementary symmetric polynomials” σ1 = x+y and

σ2 = xy. Therefore, each Ln(x, y) ∈ Z[σ1,
√
σ2], Ln(x, y) = Λn(σ1,

√
σ2), where

Λn(x, y) ∈ Z[x, y].

Next, FTSP also says [1] that the polynomials are algebraically independent

over Z, from which it follows easily that σ1 and
√
σ2 are also algebraically indepen-

dent. Therefore, if R ⊇ Z is any integral domain containing Z, and if r1, r2 ∈ R are

arbitrary elements, then the evaluation σ1 7→ r1,
√
σ2 7→ r2 determines a unique

homomorphism Z[σ1,
√
σ2] → R, f(σ1,

√
σ2) 7→ f(r1, r2). Notice that if n > 2, and
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φ(n) = 2s, then x−sΦn(x) = Ln(x, x
−1) = Λn(x + x−1, 1). We now define the

polynomials Θn(x) = Λn(x, 1). Clearly, Θn(x) is a monic polynomial of degree s

having 2 cos(2π/n) as a root. Since it is a simple matter to show that the minimal

polynomial of 2 cos(2π/n) must have degree s [2,3], one concludes that Θn(x) is the

minimal polynomial of 2 cos(2π/n). From this, we see easily that if Ψn(x) is the

minimal polynomial of cos(2π/n), then we must have Ψn(x) = 2−sΘn(2x).

Lemma 1.1. For each n > 2, Ln(x, y) = Φn(
√
x,

√
y).

Proof. As Φn(
√
x,

√
y) =

∏

(
√
x − ω

√
y), where the product is taken over the

primitive nth roots of unity, and since Ln(x, y), Φn(
√
x,

√
y) have the same degree

as polynomials in
√
x,

√
y, it suffices to prove that Ln(ω

2y, y) = 0 for any primitive

nth root of unity. We have

Ln(ω
2y, y) =

s
∑

i=0

ai(ω
2iyi + yi)(ωy)s−i

= ysω−s
s

∑

i=0

ai(ω
i + ω−i) = 0.

Next, we set L1(x, y) = x + y − 2
√
xy, L2(x, y) = x + y + 2

√
xy. Thus,

L1(x, y) = Λ1(σ1,
√
σ2) := σ1 − 2

√
σ2, L2(x, y) = Λ2(σ1,

√
σ2) := σ1 + 2

√
σ2, and

Λi(x, 1) = Θi(x), i = 1, 2. Note also that L1(x, y)L2(x, y) = (x− y)2.

Proposition 1.2. For any integer n ≥ 1,

(x− y)(xn − yn) =
∏

d|2n

Ld(x, y).

Proof. We have

xn − yn =
∏

d|2n

Φd(
√
x,

√
y);

as (x − y)Φ1(
√
x,

√
y)Φ2(

√
x,

√
y) = (x − y)2 = L1(x, y)L2(x, y), we may multiply

both sides of the above equation by (x − y) and apply Lemma 1.1 to obtain the

result.
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Theorem 1.3. With the notation as above, we have

xs+1 + ys+1 −√
xy(xs + ys) =

∏

d|n

Ld(x, y), if n = 2s+ 1 is odd,

xs+1 + ys+1 −√
xy(xs−1 + ys−1) =

∏

d|n

Ld(x, y), if n = 2s is even.

Proof. Assume first that n = 2s+ 1 is odd. Then

(xs+1 + ys+1 −√
xy(xs + ys))(xs+1 + ys+1 +

√
xy(xs + ys)) = (x− y)(xn + yn)

=
∏

d|2n

Ld(x, y)

=
∏

d|n

Ld(x, y)
∏

d|n

L2d(x, y).

Since the polynomials Ld(x, y) are pairwise relatively prime in Z[
√
x,

√
y], it suffices

to show that Ld(x, y)|(xs+1 + ys+1 −√
xy(xs + ys)) in Z[

√
x,

√
y], whenever d|n. If

d|n, d 6= 1, 2, then Ld(x, y) = Φd(
√
x,

√
y) which has factors of the form (

√
x−ω

√
y)

where ω is a primitive dth root of unity. On the other hand, if we set
√
x = ω

√
y

in xs+1 + ys+1 −√
xy(xs + ys), we obtain

ω2s+2ys+1 + ys+1 − ωy(ω2sys + ys) = ys+1(ω2s+2 + 1− ω2s+1 − ω)

= ys+1(ωn+1 + 1− ωn − ω)

= 0;

since d|n implies that ωn = 1. Finally, note that

xs+1 + ys+1 −√
xy(xs + ys) = (

√
x−√

y)((
√
x)2s+1 − (

√
y)2s+1)

and so L1(x, y) = x+ y− 2
√
xy = (

√
x−√

y)2 divides xs+1 + ys+1 −√
xy(xs + ys),

as well.
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Next, assume that n = 2s is even. As above, we assume that d|n and that ω

is a primitive dth root of unity. Setting
√
x = ω

√
y yields

xs+1 + ys+1 −√
xy(xs−1 + ys−1) = ys+1(ω2s+2 + 1− ω2s − ω2) = 0.

This proves that if d|n, Ld(x, y)|(xs+1 + ys+1 − √
xy(xs−1 + ys−1)). Also,

L1(x, y)L2(x, y) = (x + y − 2
√
xy)(x + y + 2

√
xy) = (x + y)2 − 4xy = (x − y)2

and xs+1 + ys+1 −√
xy(xs−1 + ys−1) = (x− y)(xs − ys) and hence, is divisible by

(x − y)2. Finally, the argument is concluded in both cases by observing that as a

polynomial in Z[
√
x,

√
y],

∏

d|n Ld(x, y) has degree n+ 2.

2. The Minimal Polynomial of cos(2π/n). To relate the work of Section

1 with that of Watkins and Zeitlin [3], we recall the definition of the Chebyshev

polynomial Tn(cos θ) = cosnθ. Equivalently, if ζ = e2πiθ, then cos θ = 1
2 (ζ + ζ−1),

cosnθ = 1
2 (ζ

n + ζ−n) and so the coefficients of Ts(x) are obtained by writing
1
2 (ζ

n + ζ−n) as a polynomial in 1
2 (ζ + ζ−1). That this can be done is an easy

inductive argument. On the other hand, using FTSP one writes xn + yn as a

polynomial in σ1 = x+ y and σ2 = xy. For example, we have

x3 + y3 = (x+ y)3 − 3xy(x+ y) = σ3
1 − 3σ2σ1.

Thus, if xn + yn = Sn(σ1, σ2) then one sees easily that Tn(x) =
1
2Sn(2x, 1). Next,

the polynomials occurring in Theorem 1.3 are all in Z[σ1,
√
σ2]; we may then spe-

cialize σ1 7→ x,
√
σ2 7→ 1. We have already observed that the polynomials Ld(x, y)

specialize to Θd(x), the minimal polynomial of 2 cos(2π/d). The following is imme-

diate from which equations (3) and (4) follow easily.

Corollary 2.1 [Watkins-Zeitlin]. The following are polynomial identities.

Ss+1(x)− Ss(x) =
∏

d|n

Θd(x) if n = 2s+ 1 is odd;

Ss+1(x)− Ss−1(x) =
∏

d|n

Θd(x) if n = 2s is even.

3. The Minimal Polynomial of cos(2π/p), Where p is Prime. In this

section, we assume that p is prime, and that ζ = e2πi/p. As in the earlier sections,
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we shall continue to focus on 2 cos(2π/p) = ζ + ζ−1 and its minimal polynomial

Θp(x), and derive information on Ψp(x) as a consequence.

Naturally, one approach to this problem is to write p = 2s+ 1 (the case p = 2

being trivial: Θ2(x) = x+ 2) and use Corollary 2.1. This yields

(x− 2)(Ss+1(x)− Ss(x)) = Θp(x).

This will generate recurrence relations on the coefficients of Θp(x). However, we

prefer a more direct approach.

Theorem 3.1. Let p = 2s + 1 be an odd prime. If Θp(x) is the minimal

polynomial of 2 cos(2π/p), then

Θp(x) =

s
∑

i=0

(−1)iσix
s−i,

where

σ2k = (−1)k
(

s− k

k

)

, k = 0, 1, . . . ,

⌊

s

2

⌋

;

σ2k+1 = (−1)k
(

s− k

k − 1

)

, k = 1, . . . ,

⌊

s+ 1

2

⌋

.

Proof. If

f(x) =

⌊ s

2
⌋

∑

k=0

(−1)k
(

s− k

k

)

xs−2k −
⌊ s+1

2
⌋

∑

k=1

(−1)k
(

s− k

k − 1

)

xs−(2k−1),
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then since deg f(x) = degΘp(x), it suffices to show that f(ζ + ζ−1) = 0. We have

f(ζ + ζ−1) =

⌊ s

2
⌋

∑

k=0

(−1)k
(

s− k

k

)

(ζ + ζ−1)s−2k

−
⌊ s+1

2
⌋

∑

k=1

(−1)k
(

s− k

k − 1

)

(ζ + ζ−1)s−2k+1

=

⌊ s

2
⌋

∑

k=0

s−2k
∑

l=0

(−1)k
(

s− k

k

)(

s− 2k

l

)

ζ−s+2k+2l

−
⌊ s+1

2
⌋

∑

k=1

s−2k+1
∑

l=0

(−1)k
(

s− k

k − 1

)(

s− 2k + 1

l

)

ζ−s+2k+2l−1.

In the sum,

⌊ s

2
⌋

∑

k=0

s−2k
∑

l=0

(−1)k
(

s− k

k

)(

s− 2k

l

)

ζ−s+2k+2l,

the coefficient of ζ−s+2r, 0 ≤ r ≤ ⌊ s
2⌋ is given by

(

s

0

)(

s

r

)

−
(

s− 1

1

)(

s− 2

r − 1

)

+ · · ·+ (−1)r
(

s− r

r

)(

s− 2r

0

)

=
r

∑

m=0

(−1)m
(

s−m

m

)(

s− 2m

r −m

)

.
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Next note that

(

s−m

m

)(

s− 2m

r −m

)

=
(s−m)!

m!(s−m−m)!

(s− 2m)!

(r −m)!(s− 2m− r +m)!

=
(s−m)!(s− 2m)!

m!(s− 2m)!(r −m)!(s−m− r)!
=

r!(s −m)!

m!(r −m)!r!(s −m− r)!

=
r!

m!(r −m)!

(s−m)!

r!(s−m− r)!
=

(

r

m

)(

s−m

r

)

.

In the sum

⌊ s+1

2
⌋

∑

k=1

s−2k+1
∑

l=0

(−1)k+1

(

s− k

k − 1

)(

s− 2k + 1

l

)

ζ−s+2k+2l−1

the coefficient of ζ−s+2r−1, 1 ≤ r ≤ ⌊ s+1
2 ⌋ is given by

(

s− 1

0

)(

s− 1

r − 1

)

−
(

s− 2

1

)(

s− 3

r − 2

)

+ · · ·+ (−1)r
(

s− r

r − 1

)(

s− 2r + 1

0

)

=

r−1
∑

m=0

(−1)m
(

s−m− 1

m

)(

s− 2m− 1

r −m− 1

)

.
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Now

(

s−m− 1

m

)(

s− 2m− 1

r −m− 1

)

=
(s−m− 1)!

m!(s−m− 1−m)!

(s− 2m− 1)!

(r −m− 1)!(s− 2m− 1− r +m+ 1)!

=
(s−m− 1)!(s− 2m− 1)!

m!(s−m− 1)!(r −m− 1)!(s−m− r)!

=
(r − 1)!(s−m− 1)!

m!(r − 1−m)!(r − 1)!(s−m− r)!

=
(r − 1)!

m!(r − 1−m)!

(s−m− 1)!

(r − 1)!(s−m− 1− r + 1)!

=

(

r − 1

m

)(

s−m− 1

r − 1

)

.

Therefore, since
∑s

m=−s ζ
m = 0, it suffices to prove that

r
∑

m=0

(−1)m
(

r

m

)(

s−m

r

)

= 1,

and that

r−1
∑

m=0

(−1)m
(

r − 1

m

)(

s−m− 1

r − 1

)

= 1.

Thus, it suffices to prove the following.

Lemma 3.2. For any integer s, we have

r
∑

m=0

(−1)m
(

r

m

)(

s−m

r

)

= 1.
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Proof. We shall prove the stronger result that

r
∑

m=0

(−1)m
(

r

m

)(

s−m

r′

)

=

{

1, if r = r′;

0, if r′ < r.

We use induction on s.

r
∑

m=0

(−1)m
(

r

m

)(

s−m

r

)

=
r

∑

m=0

(−1)m
(

r

m

)[(

s−m− 1

r

)

+

(

s−m− 1

r − 1

)]

= 1 + 0 = 1.

Now, if r′ < r,

r
∑

m=0

(−1)m
(

r

m

)(

s−m

r′

)

=

r
∑

m=0

(−1)m
(

r

m

)[(

s−m− 1

r′

)

+

(

s−m− 1

r′ − 1

)]

= 0 + 0 = 0.

This concludes the proof of Theorem 3.1.
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