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COMMUTATIVITY MODULO RADICAL AND SPECTRA

IN L. M. C. - ALGEBRAS

A. K. Gaur

Abstract. A locally multiplicative convex algebra E is commutative modulo

the radical R(E) if and only if the left joint spectrum of a finite set of elements is

contained in the right joint spectrum of these elements.

1. Introduction. Let E be a commutative complete l.m.c. algebra and let

x1, x2, . . . , xn be in E. Then the joint spectrum [1, 3] of x1, x2, . . . , xn is the subset

of C, the complex plane, defined by:

sp(E;x1, x2, . . . , xn) = {(φ(x1), φ(x2), . . . , φ(xn)) : φ ∈ △(E)},

where △(E) is the maximal ideal space of E. In other words, sp(E;x1, x2, . . . , xn)

is the set of complex n-tuples (λ1, λ2, . . . , λn) such that either E(λ1 − x1) + · · ·+

E(λn − xn) is a proper left ideal or (λ1 − x1)E + · · ·+(λn − xn)E is a proper right

ideal. If n = 1, then the joint spectrum of a single element reduces to the usual

notion of spectrum.

Let E be a complete l.m.c. algebra with unit and with a fixed family {pα},

α ∈ I of submultiplicative seminorms. For each α ∈ I, let Eα be the Banach algebra

with unit and qα:E → Eα be the quotient map, then E is imbedded as a dense

subalgebra of the projective limit via the Arens-Michael decomposition. Denote by

Ω(E) the set of all spectral states of E and ρα(x) is the spectral radius of xα ∈ Eα.

Then,

Ω(E) =
⋃

α

q∗α(Ω(Eα)),

where q∗α is the adjoint of qα and

Ω(Eα) = {f ∈ E∗
α : f(e) = 1, |f(x)| ≤ ρα(x), x ∈ Eα},

(see [1]). Let △α be the set of all multiplicative linear functionals on Eα and let

R(E) be the radical of E.

Theorem 1.1. Let E be a complete l.m.c. algebra with unit. Then E is

commutative modulo R(E) if and only if co sp(E;x) = {f(x) : f ∈ Ω(E)}.
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Proof. Let E be commutative modulo R(E). Then for x, y, z ∈ E, z(xy − yx)

is quasi-regular [3].

For each α ∈ E,

ρEα
(xαyα − yαxα) = 0,

because

ρE(xy − yx) = 0 and ρE = sup
α

ρEα
.

This proves that Eα is commutative modulo R(Eα), [4]. So by the definition of Ωα

we obtain

sp(Eα;xα) = {φα(xα) : φα ∈ △α}.

Since △α ⊂ Ωα and Ωα is a convex set, we also have

co sp(Eα;xα) ⊂ {fα(xα) : fα ∈ Ωα}.

Further, the family of spectra is directed and

sp(E;x) =
⋃

α

co sp(Eα;xα),

which also proves that

co sp(Eα;xα) = {fα(xα) : fα ∈ Ωα}.

This, in turn, implies that

co sp(E;x) = {f(x) : f ∈ ΩE}.

We will show that the condition

co sp(E;x) = {f(x) : f ∈ ΩE}

implies that E is commutative modulo R(E).

Let f ∈ Ω(E). Then for x, y ∈ E, sp(E; (xy−yx)) = {0}. It is obvious that Eα

is commutative modulo R(Eα), α ∈ I. Hence, for x, y, z ∈ E, we have z(xy − yx)

is quasi-regular in E. This shows that xy− yx ∈ R(E) and thus, E is commutative

modulo R(E).



50 MISSOURI JOURNAL OF MATHEMATICAL SCIENCES

2. Joint Spectra and R(E). In this section we establish a necessary and a

sufficient condition for an l.m.c. algebra E to be commutative modulo R(E). We

denote the left and right joint spectra of E by SPL(E) and SPR(E), respectively.

These spectra are defined as follows.

SPL(E) =

{

λi ∈ C :

n
∑

i=1

E(xi − λi) 6= E

}

SPR(E) =

{

λi ∈ C :

n
∑

i=1

(xi − λi)E 6= E

}

.

We prove the following theorem.

Theorem 2.1. Let E be a complete complex l.m.c. algebra with unit and let

x1, x2, . . . , xn be in E. Then SPL(E) ⊂ SPR(E) if and only if E is commutative

modulo radical R(E).

Proof. Let Eα be a commutative modulo R(Eα) and

xα1
, xα2

, . . . , xαn
∈ Eα.

Then

sp(Eα/R(Eα)) = SPL(Eα) = SPR(Eα).

If M ∈ △(Eα), then

MEα =

{ k
∑

i=1

mixαi
: mi ∈ M, xαi

∈ Eα, i = 1, . . . , k; k = 1, 2, . . .

}

and M ⊂ MEα. Suppose M 6= MEα. Then there exist m1,m2, . . . ,mn ∈ M and

xα1
, xα2

, . . . , xαn
∈ Eα

such that

xα = m1xα1
+ · · ·+mnxαn

6= M.
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If Ml is the left ideal of Eα, then the maximality of M implies that Ml = Eα. This

shows that

eα = m+m1xα1
+ · · ·+mnxαn

,

where mi = ymi ∈ M , i = 1, 2, . . . , n, and eα is the unit of Eα. This proves that

0 /∈ SPR(m,m1, . . . ,mn)

and hence, there exists γ0, γ1, . . . , γn ∈ Eα such that

γ0m+ γ1m1 + · · ·+ γnmn = eα.

Thus, eα ∈ M , which contradicts the fact that M is a proper ideal. So we have

shown that M is a two-sided ideal and M = MEα. Let Eα/M be the quotient

algebra. If Hα is the set of all nonzero elements of this quotient algebra, then any

element in Hα has a left inverse and Hα is a group as well as a semigroup. By the

Gelfand-Mazur Theorem we have Eα/M ∼= C. Hence, Eα/R(Eα) is commutative.

The following definition comes from [2].

Definition 2.1. The left and right approximate point spectra of

xα1
, . . . , xαn

∈ Eα

are defined as follows.

SPLP (xα1
, . . . , xαn

) =

{

(λ1, . . . , λn) ∈ C
n : inf

‖yα‖α=1

n
∑

i=1

‖(xαi
− λi)yα‖ = 0

}

SPRP (xα1
, . . . , xαn

) =

{

(λ1, . . . , λn) ∈ C
n : inf

‖yα‖α=1

n
∑

i=1

‖yα(xαi
− λi)‖ = 0

}

,

respectively. Also, note that

SPP = SPLP

⋃

SPRP ,

where SPP denotes the point spectrum.

Let SPLP (x) and SPRP (x) denote the left and the right approximate point

spectra of x in E.
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Theorem 2.2. For each α ∈ I and xα ∈ Eα,

SPLP (xα) ⊂ SPRP (xα) implies SPL(xα) = SPR(xα).

Proof. By the definition of spectrum, the condition SPL(xα) = SPR(xα) is

equivalent to the following condition.

If for xα, yα ∈ Eα and xαyα = eα, then yαxα = eα, where eα is the identity

in Eα, [1]. Let SPLP (xα) ⊂ SPRP (xα) and xαyα = eα. Then for α ∈ I and

uα ∈ Eα,

‖uαxαyα‖α = ‖uα‖α ≤ ‖uαxα‖α‖yα‖α.

This shows that 0 /∈ SPRP (xα) and since SPLP (xα) ⊂ SPRP (xα), we have 0 /∈

SPLP (xα).

Hence, there exists a ǫ > 0 such that ǫ‖xα‖α ≤ ‖xαuα‖α for all xα ∈ Eα. Let

zα = yαxα. Then

xαzα = xα(yαxα) = (xαyα)xα = eαxα.

That is, 0 = xα(eα − zα) and

0 = ‖xα(eα − zα)‖α ≥ ǫ‖eα − zα‖α.

Thus, eα = zα and the theorem follows.

Corollary 2.3.

SPLP (x) ⊂ SPRP (x) implies SPL(x) = SPR(x),

for all x ∈ E.

Proof. Since

sp(E;x) =
⋃

α

sp(Eα;xα),

the corollary follows from Theorem 2.2 and the fact that the union of left and right

joint approximate spectra is the joint spectrum and the union of left and right

approximate point spectra is the joint approximate point spectrum [2].
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Example 2.1. Let X be the vector space of the 3×3 matrices generated by the

following matrices and the identity matrix I3.

X1 =





0 1 0
0 0 0
0 0 0



 , X2 =





1 0 0
0 0 0
1 0 0



 , X3 =





0 1 0
0 0 0
0 1 0



 , X4 =





0 0 0
0 1 0
0 0 0



 .

Of all possible products of these matrices, the nonzero products are

X2
2 = X1, X2

4 = X4, X1X4 = X1, X3X4 = X3 = X2X1.

Hence, X is an algebra generated by X1, X2, X3, X4 and I3. An arbitrary element

x of X has the following form.

x = αI3 + α1X1 + α2X2 + α3X3 + α4X4,

where αi are scalars. Let φ1, φ2, and φ3 be the multiplicative functionals on X .

Then φ1(x) = α, φ2(x) = α+ α2, and φ3(x) = α+ α4 and

R(X) =
⋂

{ the kernels of φi, i = 1, 2, 3}.

Hence, by Theorem 2.1, X/R(X) is commutative.

Further,

SPLP (X ; I3 +X1;X2) = {(1, 0), (1, 1)} 6⊂ SPLR(X, I3 +X1;X2) = {(1, 0)}.

The above example estalishes that there are algebras where X/R(X) is com-

mutative but SPLP 6⊂ SPLR.

Last but not least, we have the following question.

Does the condition SPLP ⊂ SPLR imply that X/R(X) is commutative?

We note that the last example gives a converse of the above posed question.
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