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THE CONGRUENT-INCIRCLE CEVIANS OF A TRIANGLE

Paul Yiu

Abstract. A congruent-incircle cevian of a triangle subdivides the triangle
into two triangles with congruent incircles. We give two Euclidean constructions
of such cevians, and also construct Heronian triangles for which the three pairs of
congruent-incircle subtriangles are all Heronian.

1. Introduction. Consider the problem of dividing a given triangle into
two subtriangles with congruent incircles: given a triangle ABC, find a Euclidean
construction of the point P on the side BC so that the subtriangles ABP and ACP
have congruent incircles. We shall refer to these subtriangles as the congruent-
incircle subtriangles on the side BC, and AP the corresponding congruent-incircle
cevian of the triangle. The other two congruent-incircle cevians BQ and CR are
analogously defined. In Section 6, we study the condition for which the three
congruent-incircle cevians are concurrent. We also construct Heronian triangles for
which the three pairs of congruent-incircle subtriangles are all Heronian.

2. Preliminaries. Throughout this paper, we shall denote by a, b, c, re-
spectively the lengths of the sides BC, CA, AB of triangle ABC, and α, β, γ the
opposite angles of these sides. The area of the triangle and its inradius are given
by

△ =
√

s(s− a)(s− b)(s− c) and r =
△
s
,

where s := 1
2
(a + b + c) is the semiperimeter. It is convenient to work with the

quantities

τ1 = tan
α

2
, τ2 = tan

β

2
, τ3 = tan

γ

2
.

These “half-tangents” satisfy the basic relation

τ1τ2 + τ2τ3 + τ3τ1 = 1. (1)

The triangle ABC is similar to a standard triangle with unit semiperimeter, namely,
the one with sides

a0 = τ1(τ2 + τ3), b0 = τ2(τ3 + τ1), c0 = τ3(τ1 + τ2).
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The area and inradius of this standard triangle are both given by τ1τ2τ3. Details
can be found in [1, 2].

3. Congruent – Incircle Subtriangles. Consider the congruent-incircle
cevian AP of triangle ABC. Suppose this has length x, and divides the side BC
in the ratio BP : PC = k : 1 − k. Equating the inradii of the subtriangles ABP
and ACP , we have

2k△
c+ x+ ka

=
2(1− k)△

b+ x+ (1− k)a
. (2)

This equation can be rearranged into the form

c+ x

k
+ a =

b+ x

1− k
+ a.

Here, before cancelling the common term a on both sides, we observe that the
resulting equation would be the same even if we change signs and consider

2k△
c+ x− ka

=
2(1− k)△

b+ x− (1− k)a
(3)

instead of (2). In either case, we have

k : 1− k = x+ c : x+ b. (4)

Now, equation (3) asserts the congruence of the excircles of the subtriangles on
the opposite sides of the vertex A. Hence, the subtriangles ABP and ACP have

congruent incircles if and only if they have congruent excircles on the opposite sides

of A. See Figure 1.
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Figure 1.

Figure 2.
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4. Construction of Congruent – Incircle Cevian. Suppose the incircle
touches the side BC at X , and the excircle touches it at X ′. It is well known that

BX = CX ′ = s− b,

CX = BX ′ = s− c.

Denote by r and r1 the inradius and the radius of the excircle on the side BC.
From Figure 2, it is clear that

τ2 =
r

s− b
and τ3 =

s− b

r1
.

It follows that
r

r1
= τ2τ3. (5)

Consider the congruent-incircle subtriangles ABP and ACP again. Suppose
they have common inradius ρ. As noted above, these subtriangles also have congru-
ent excircles on the opposite sides of A, say, of radii ρ1. Denote by θ the magnitude
of angle APB, so that angle APC has magnitude π − θ. Applying (5) to the
subtriangle ABP , we obtain

ρ

ρ1
= τ2 · tan

θ

2
.

On the other hand, from the subtriangle ACP , we have

ρ

ρ1
= tan

π − θ

2
· τ3 =

τ3

tan θ

2

.

Combining these two equations, we have

(

ρ

ρ1

)2

= τ2τ3.
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From this, we also obtain

tan
θ

2
=

√

τ2
τ3
. (6)

In terms of the sides of triangle ABC, we have

tan
θ

2
=

√

s− b

s− c
=

√

(s− b)(s− c)

s− c
=

√
BX ·XC

XC
,

where X is the point of contact of the incircle of triangle ABC with the side BC.
This leads to the following construction of the point P .

Suppose the incircle of triangle ABC has center I, and touches the side BC
at X .

(1) Extend XI to intersect the semicircle with diameter BC at the point Y .
(2) Construct the line through A parallel to Y C, intersecting the line BC at Q.
(3) Construct the perpendicular bisector of AQ to intersect BC at P .

Then AP is the congruent-incircle cevian on the side BC. See Figure 3 below.

Figure 3.
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Figure 4.

5. An Alternative Construction.

Proposition 1. The length of congruent-incircle cevian AP is
√

s(s− a).

Proof. Applying the law of sines to triangle ABP , we have AP =
(c sinβ)/(sin θ). Now, making use of (6), we have

sin θ =
2 tan θ

2

1 + tan2 θ

2

=
2
√

(s− b)(s− c)

a
.

It follows that

AP =
ac sinβ

2
√

(s− b)(s− c)
=

△
√

(s− b)(s− c)
=

√

s(s− a)

by Heron’s formula.

Given a triangle ABC, let D be the midpoint of BC, and let the bisector of
angle A intersect BC at X . Lau [3] has established an interesting formula which
leads to an alternative construction of the congruent-incircle cevian AP .

Lemma 2 (Lau). s(s − a) is equal to the dot product of the median AD and
the angle bisector AX .
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This means that if the perpendicular from X to AD is extended to intersect
the circle with diameter AD at a point Y , then AY =

√

s(s− a). Now, the circle
A(Y ) intersects the side BC at two points, one of which is the required point P .
See Figure 4.

6. Condition for Concurrency. We consider the condition for the three
congruent-incircle cevians of a triangle to be concurrent. It is convenient to replace
the triangle by the standard one with unit perimeter. In this case, these cevians
have lengths

√
τ2τ3,

√
τ3τ1, and

√
τ1τ2, respectively.

Writing
τ2τ3 = u2, τ3τ1 = v2, τ1τ2 = w2, (7)

for positive numbers u, v, and w, we have

BP : PC = u+ c0 : u+ b0 = u+ 1− w2 : u+ 1− v2,

CQ : QA = v + a0 : v + c0 = v + 1− u2 : v + 1− w2,

AR : RB = w + b0 : w + a0 = w + 1− v2 : w + 1− u2.

These cevians AP , BQ, CR are concurrent if and only if

BP · CQ · AR = PC ·QA ·RB.

This is equivalent to

−(u+ 1−w2)(v + 1− u2)(w + 1− v2) + (u+ 1− v2)(v + 1−w2)(w + 1− u2) = 0.

The polynomial on the left hand side clearly vanishes if any two of u, v, and w are
equal. This means that it is divisible by (u− v)(v −w)(w − u). It is then not very
hard to figure out the complete factorization so that the condition for concurrency
is

(u− v)(v − w)(w − u)(1 + u+ v + w + uv + vw + wu) = 0.

Since u, v, and w are all positive, this is zero precisely when two of u, v, w are
equal. From this the following proposition is obvious.

Proposition 3. The three congruent-incircle cevians of a triangle are concurrent
if and only if the triangle is isosceles.

7. Rationality of Congruent – Incircle Cevian. Now suppose ABC
is a Heronian triangle, namely, with integer sides and integer area. We consider
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the possibility that the congruent-incircle subtriangles ABP and ACP also are
Heronian. We shall also construct Heronian triangles for which all three pairs of
congruent-incircle subtriangles are Heronian. It is convenient to work with triangles
with rational sides and rational areas. (We shall call such triangles rational). Then
one obtains Heronian triangles by magnifying appropriately.

Lemma 4. The similarity class of a triangle contains rational and Heronian
triangles if and only if τ1, τ2, τ3 are all rational.

Proposition 5. Let ABC be a rational triangle. The two congruent-incircle
subtriangles on the side BC are rational if and only if τ2τ3 is the square of a
rational number. Consequently, all three pairs of congruent-incircle subtriangles
are rational if and only if τ2τ3, τ3τ1 and τ1τ2 are all rational squares.

Proof. Clearly, a pair of congruent-incircle subtriangles are rational if and only
if the corresponding cevian is rational. The first part now follows from (6). The
rest is then clear.

Proposition 6. The congruent-incircle subtriangles on the hypotenuse of a right
triangle cannot be rational.

While this follows as a corollary of Proposition 5 by analyzing an appropriate
Diophantine equation, we give here a short geometric proof, invoking a famous
theorem of Fermat.

Proof. It is well known that the inradius of a right triangle is r = s− c, where
c is the hypotenuse. The length of the congruent-incircle cevian on the hypotenuse,
by Proposition 1, is given by

√

s(s− c) =
√
rs =

√
△. Fermat has proved that the

area of a Pythagorean triangle cannot be a square. This completes the proof of the
proposition.

8. Construction of Rational Triangles. To construct a rational triangle
with all congruent –circles subtriangles rational, we seek positive rational numbers
u, v, w satisfying

u2 + v2 + w2 = 1. (8)

Then with
τ1 =

vw

u
, τ2 =

wu

v
, τ3 =

uv

w
,

we have a rational triangle with all three congruent-incircle cevians rational.
The general positive rational solution of (8) is of the form

u =
t21 − t22 − t23
t21 + t22 + t23

, v =
2t1t2

t21 + t22 + t23
, w =

2t1t3
t21 + t22 + t23

.
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Here, t1, t2, t3 are positive integers satisfying t22+ t23 < t21. See, for example, [4]. We
may assume t1, t2, t3 are relatively prime. From these facts, we obtain a rational
triangle with all congruent-incircle subtriangles rational. To simplify expressions,
we magnify by a factor (t21 + t22 + t23)

2, and obtain a Heronian triangle with sides

a = (v2 + w2)(t21 + t22 + t23)
2 = 4t21(t

2
2 + t23),

b = (w2 + u2)(t21 + t22 + t23)
2 = [(t1 − t2)

2 + t23][(t1 + t2)
2 + t23]

c = (u2 + v2)(t21 + t22 + t23)
2 = [(t1 − t3)

2 + t22][(t1 + t3)
2 + t22].

The cevians AP , BQ, CR have integer lengths

(t21 − t22 − t23)(t
2
1 + t22 + t23), 2t1t2(t

2
1 + t22 + t23), 2t1t3(t

2
1 + t22 + t23).

These cevians divide the sides of the triangle in the ratios

BP : PC = u+ c : u+ b

= t21 + t22 − t23 : t21 − t22 + t23,

CQ : QA = v + a : v + c

= 2t1[t
2
1t2 + (2t1 + t2)(t

2
2 + t23)] : (t

2
1 + t1t3 + t22 + t23)

2 − 5t21t
2
3,

AR : RB = w + b : w + a

= (t21 + t1t2 + t22 + t23)
2 − 5t21t

2
2 : 2t1[t

2
1t3 + (2t1 + t3)(t

2
2 + t23)].

Note that these segments need not have integer lengths. The rational
congruent-incircle subtriangles nevertheless can be made Heronian by further mag-
nification.

The three pairs of congruent incircles have radii

2t2t3(t
2
1 − t22 − t23),

4t21t2t3(t
2
1 − t22 − t23)

(t1 + t2)2 + t23
,

4t21t2t3(t
2
1 − t22 − t23)

(t1 + t3)2 + t22
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respectively.

9. A Numerical Example. With (t1, t2, t3) = (3, 2, 1), we obtain

(u, v, w) =

(

2

7
,
6

7
,
3

7

)

, (τ1, τ2, τ3) =

(

9

7
,
1

7
,
4

7

)

,

leading to the standard rational triangle with sides

(a0, b0, c0) =

(

45

49
,
13

49
,
40

49

)

.

Magnifying by a factor 49 · 65, we obtain the Heronian triangle

(a, b, c;△, r) =

(

2925, 845, 2600; 1064700,
2340

7

)

.

The congruent-incircle subtriangles on each side are all Heronian.

side cevian subtriangle subtriangle inradius
2925=1950+975 910 (2600,1950,910) (910,975,845) 260
845=435+410 2730 (2925,435,2730) (2730,410,2600) 180
2600=884+1716 1365 (845,884,1365) (1365,1716,2925) 234

10. Isosceles Triangles. The triangle constructed in Section 8 is isosceles
provided two of the quantities u, v and w are equal. In terms of t1, t2, t3, this
condition can be put into the form

(t2 − t3)(t
2
1 − t22 − t23 − 2t1t2)(t

2
1 − t22 − t23 − 2t1t3) = 0.

If t3 = t2, and t21 > 2t22, writing t for the rational number t2/t1, we obtain an
isosceles triangle with vertical angle α = 4 arctan(2t2). By obvious symmetry, the
median on the base is a congruent-incircle cevian.

Proposition 7. The congruent-incircle subtriangles on the slant side of a ra-
tional isosceles triangle with vertical angle α are rational if and only if α =
4 arctan(2t2) for a rational number t < (

√
2)/2.
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The sides of the isosceles triangle can be taken as

a = 8t2, b = c = 1 + 4t4.

The congruent-incircle cevian BQ on the slant side AC has length 2t(1 + 2t2), and
this divides the slant side into two segments CQ and QA of lengths

2t(1− 2t+ 2t2)(1 + 4t+ 2t2)

1 + 2t+ 2t2
and

(1 − 2t+ 2t2)(1 + 2t+ 4t3 + 4t4)

1 + 2t+ 2t2
,

respectively. The congruent-incircle subtriangles BCQ and BAQ are both rational,
and have areas

8t3(1 − 2t2)(1 + 2t2)(1 + 4t+ 2t2)

(1 + 2t+ 2t2)2
and

4t2(1− 2t2)(1 + 2t2)(1 + 2t+ 4t3 + 4t4)

(1 + 2t+ 2t2)2
.

For example, with t = 1
2
, we obtain an isosceles triangle with vertical angle

4 arctan 1
2
. This leads to the standard isosceles rational triangle with sides 5

9
, 5
9
, 8
9
.

Magnifying by a factor 45, we obtain the isosceles Heronian triangle (25,25,40).
Dividing each slant side into two segments of lengths 11 and 14, we obtain the
Heronian triangles (25, 11, 30) and (30, 14, 40) each of inradius 4.

The author thanks Hayo Ahlburg of Spain and K. R. S. Sastry of India for
valuable comments on the paper.
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