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MEANS AND THEIR ENDS

Richard P. Kubelka

The Arithmetic-Geometric Mean Inequality [1] guarantees that

GM(a1, a2, . . . , an)/AM(a1, a2, . . . , an) ≤ 1

for any finite set of positive terms {a1, a2, . . . , an}. (Here GM and AM denote

the geometric and arithmetic means, respectively.) Except in the case where the

numerator and denominator are equal, however, we are given no clue as to what

the value of that ratio might be. In [2] I showed that for any positive real number s

lim
n→∞

GM(1s, 2s, . . . , ns)

AM(1s, 2s, . . . , ns)
=

s+ 1

es
.

The special case s = 1 leads to the well-known result that

lim
n→∞

n

√
n!

n
=

1

e
.

In fact, a more general result holds for polynomial sequences and also for

positive power sequences.

Proposition 1. If ak = csk
s + cs−1k

s−1 + · · · + c1k + c0 is positive for each k

or if ak = cks for c and s positive real numbers, then

lim
n→∞

GM(a1, a2, . . . , an)

AM(a1, a2, . . . , an)
=

s+ 1

es
. (1)

Furthermore, if we define arithmetic and geometric means for a continuous

positive function f by

AM(f, n) =
1

n

∫ n

0

f(x) dx and GM(f, n) = exp

[

1

n

∫ n

0

ln f(x) dx

]
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whenever these integrals are defined [1], then for positive polynomials f(x) = csx
s+

cs−1x
s−1+ · · ·+ c1x+ c0, and also for positive power functions f(x) = cxs, we have

the continuous version of (1).

Proposition 2.

lim
n→∞

GM(f, n)

AM(f, n)
=

s+ 1

es
. (2)

Proof. We prove these results first in the continuous case (2) and then apply

a Riemann sum argument to get the discrete case (1).

To prove (2), it suffices to show that

lnGM(f, n)− lnAM(f, n) → ln(s+ 1)− s. (3)

Assume that f(x) = csx
s + cs−1x

s−1 + · · · + c1x + c0 and that f(x) > 0 for all

x ≥ 0.

Remark 1. We note that

AM(f, n) =
1

n

∫ n

0

f(x) dx =
1

n

∫ a

0

f(x) dx+
1

n

∫ n

a

f(x) dx ≈ 1

n

∫ n

a

f(x) dx

and

lnGM(f, n) =
1

n

∫ n

0

ln f(x) dx =
1

n

∫ a

0

ln f(x) dx+
1

n

∫ n

a

ln f(x) dx

≈ 1

n

∫ n

a

ln f(x) dx

for large n ≫ a. This allows us to start our integrals wherever we like and thus

avoid any potential problems with convergence of improper integrals.

Write

f(x) = csx
s

[

1 +
cs−1

cs

1

x
+ · · ·+ c0

cs

1

xs

]

= csx
s[1 + g(x)],
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where g(x) is O(1/x). Then

lnGM(f, n) ≈ 1

n

∫ n

a

ln f(x) dx =
1

n

∫ n

a

[ln cs + s lnx+ ln(1 + g(x))] dx

=
n− a

n
ln cs +

s

n
[n lnn− n− a ln a+ a] +

1

n

∫ n

a

ln(1 + g(x)) dx.

Since g(x) is O(1/x), the last term, being nearly the average of ln(1 + g(x)) over

the interval [a, n], will be small for large n and thus,

lnGM(f, n) ≈ ln cs + s lnn− s.

On the other hand, if F is the antiderivative of f with F (0) = 0,

lnAM(f, n) ≈ ln

[

1

n

∫ n

a

f(x) dx

]

= ln

[

csn
s

s+ 1
+

cs−1n
s−1

s
+ · · ·+ c0

1
− F (a)

n

]

= ln

[(

csn
s

s+ 1

)(

1 +
cs−1

cs

s+ 1

s

1

n
+ · · ·+ c0

cs

s+ 1

1

1

ns
− F (a)

cs

s+ 1

1

1

ns+1

)]

= ln cs + s lnn− ln(s+ 1)

+ ln

[

1 +
cs−1

cs

s+ 1

s

1

n
+ · · ·+ c0

cs

s+ 1

1

1

ns
− F (a)

cs

s+ 1

1

1

ns+1

]

≈ ln cs + s lnn− ln(s+ 1),

when n is large. Putting these two results together, we have (3), and thus, Propo-

sition 2 is proven.

We will use a Riemann sum argument for the proof of (1). For a positive,

increasing function h, a rough sketch would establish the basic sum-versus-integral

inequalities that we need.

∫ n

c

h(x) dx+ h(c) ≤
n
∑

k=c

h(k) ≤
∫ n

c

h(x) dx+ h(n). (4)
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So let us assume that f(x) = csx
s+cs−1x

s−1+ · · ·+c1x+c0, as above, is increasing

in addition to being positive and that ln f(x) is positive for x ≥ 1. (Certainly these

facts are at least eventually true, since cs > 0. But just as the lower limit of

integration could be freely chosen in the continuous case above (see Remark 1),

the choice of a starting point for our sequence does not affect the limits we are

interested in. That is, in (1) it does not matter whether we start at a1 = f(1) or

a24 = f(24), or wherever.)

Now if f(x) is increasing on [1,∞), ln f(x) will be increasing there as well, and

applying (4) successively to ln f and to f yields

1

n

∫ n

1

ln f(x) dx+
1

n
ln a1 ≤ 1

n

n
∑

k=1

ln ak ≤ 1

n

∫ n

1

ln f(x) dx+
1

n
ln an

1

n

∫ n

1

f(x) dx+
1

n
a1 ≤ 1

n

n
∑

k=1

ak ≤ 1

n

∫ n

1

f(x) dx+
1

n
an

ln

[

1

n

∫ n

1

f(x) dx+
1

n
a1

]

≤ ln

[

1

n

n
∑

k=1

ak

]

≤ ln

[

1

n

∫ n

1

f(x) dx+
1

n
an

]

,

the third line following from the monotonicity of the logarithm. Then

1

n

∫ n

1

ln f(x) dx+
1

n
ln a1 − ln

[

1

n

∫ n

1

f(x) dx+
1

n
an

]

≤ 1

n

n
∑

k=1

ln ak − ln

[

1

n

n
∑

k=1

ak

]

≤ 1

n

∫ n

1

ln f(x) dx+
1

n
ln an − ln

[

1

n

∫ n

1

f(x) dx+
1

n
a1

]

.

Exponentiating, we get

GM ′(f, n)a
1/n
1

AM ′(f, n) + 1
nan

≤ GM(a1, a2, . . . , an)

AM(a1, a2, . . . , an)
≤ GM ′(f, n)a

1/n
n

AM ′(f, n) + 1
na1

. (5)
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(Here we denote by GM ′ and AM ′ the respective means starting from x = 1 rather

than x = 0.)

Since AM ′(f, n) is dominated by (csn
s)/(s + 1), while an/n is dominated by

csn
s−1,

AM ′(f, n) + 1
nan

AM ′(f, n)
→ 1.

Also, (ln an)/n → 0, so a
1/n
n → 1. Moreover, Remark 1 guarantees that

GM ′

GM
→ 1 and

AM ′

AM
→ 1.

And certainly a
1/n
1 → 1 and a1/n → 0. As a result of all these facts, both sides of

(5) go to (s+ 1)/es by (2) and we are done with the proof of Proposition 1.

Remark 2. One can ask what

lim
GM

AM

looks like for functions other than polynomials and powers of x. For functions

much bigger than powers of x and polynomials, such as f(x) = ex, the limit is 0.

For functions much smaller, such as f(x) = lnx, the limit is 1. Certainly for any

(asymptotically) constant function, the limit is also 1, since if f(x) ≡ c, we have

GM = c = AM . (Note that this is consistent with the s = 0 case of (1) and (2).)

While we have used the expressions “much bigger than polynomials” and

“much smaller than polynomials,” we should note that the limits discussed here

are sensitive to more than just the order of the underlying function. For example,

the function f(x) = (2+sinx)x2 does not have limGM/AM = 3/e2 even though it

is “of the order of x2,” lying between x2 and 3x2, both of which do have the stated

limit.

Remark 3. One might also look at other means, for example, the harmonic

means [1].

HM(a1, a2, . . . , an) =

[

1

n

n
∑

k=1

a−1
k

]

−1

and HM(f, n) =

[

1

n

∫ n

0

[f(x)]−1 dx

]

−1

.
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The harmonic mean is smaller than the geometric mean [1], and for polynomials,

powers of x and ex, HM/GM → 0. If f(x) ≈ c, then HM ≈ GM ≈ AM ≈ c, so

HM/GM → 1 and HM/AM → 1. In fact, f(x) = lnx is small enough so that

HM/AM → 1 and, therefore, HM/GM → 1.

Remark 4. Finally, for more general arithmetic means defined by

AMr(a1, a2, . . . , an) =

[

1

n

n
∑

k=1

ark

]1/r

and AMr(f, n) =

[

1

n

∫ n

0

[f(x)]r dx

]1/r

,

[1], we can show, with only slight modifications to our proofs, that the limits of

GM/AMr are ((rs+1)1/r)/(es) for positive polynomial sequences and functions of

degree s. In fact, for such sequences and functions, these limits are special cases of

lim
n→∞

AMt

AMr
=

(rs+ 1)1/r

(ts+ 1)1/t
,

since GM = limt→0 AMt [1].
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