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CHARACTERIZATIONS OF ARITHMETICAL PROGRESSION
SERIES WITH SOME COUNTEREXAMPLES

ON INTERPOLATION

Badih Ghusayni

Abstract. Characterizations of the functions

f(z) =
z

(1− z)2
and f(z) =

1 + z

(1− z)2

are given. We also give counterexamples to show that some generalized problems
on interpolation do not hold.

1. Introduction. Suppose that

f(z) =

∞
∑

n=0

anz
n

is a power series with positive coefficients and positive radius of convergence. As-
sociate a−1 = 0, rn = an−1/an for n = 0, 1, 2, . . . . It is known [3] that if

lim
n→∞

an
an+1

= R,

then the radius of convergence of

∞
∑

n=1

anz
n

is R and also [2] if

lim inf
n→∞

log( an

an+1
)

logn
= L > 0,
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then

∞
∑

n=0

anz
n

is an entire function of order ≤ 1/L. In addition, if

lim
n→∞

log( an

an+1
)

logn
= L > 0,

then

∞
∑

n=0

anz
n

is of order 1/L.
In his paper [1], Abi-Khuzam used the term “normalize” as follows. If

g(z) = f(cz) with c a positive constant, then g(z) will have positive coefficients
{bn} and if sn = bn−1/bn, then g(sn) = f(rn), n = 0, 1, 2, . . . . Thus, one can
normalize the function f(z) to make a1 equal to a given number without changing
the sequence {f(rn)} and such a normalization was incorporated in [1] where the
following theorems were proven.

Theorem 1 [1]. If

f(z) =

∞
∑

n=0

anz
n

is a power series such that

(i) an > 0 for n = 0, 1, 2, . . . ,
(ii) 0 < rn < R < ∞, where R is the radius of convergence, and
(iii) there exists a positive real number α such that a1 = α+ 1 and

f(rn) =

(

n+ α

α

)α+1

for n = 0, 1, 2, . . . ,

then
f(z) = (1− z)−α−1 for all |z| < 1.
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Theorem 2 [1]. If

f(z) =

∞
∑

n=0

anz
n

is an entire function such that

(i) an > 0 for n = 0, 1, 2, . . . , and
(ii) a1 = 1 and f(rn) = en for n = 0, 1, 2, . . . ,

then
f(z) = ez for all z.

In concluding an interesting paper, Abi-Khuzam [1] raised the following ques-
tions.

Problem 1. If

f(r) =

∞
∑

n=0

anr
n, g(r) =

∞
∑

n=0

bnr
n,

rn = an−1/an, sn = bn−1/bn, and f(rn) = g(sn) for all n ≥ 0, does it follow that
modulo normalization f = g?

Problem 2. Since the hypothesis of Theorem 2 holds for functions with positive
and negative coefficients e.g., f(z) = e−z, one may ask whether it holds true under
the assumption an 6= 0, instead of an > 0.

In this paper we will find characterizations of a type similar to Theorems 1
and 2 and also solve Problems 1 and 2.

1. Characterization of f(z) = z/(1− z)2. Consider the power series

f(x) = x+ 2x2 + 3x3 + · · · =
∞
∑

n=1

nxn =
x

(1− x)2
, −1 < x < 1.

Here rn = n/n + 1 for n = 0, 1, 2, . . . . Since 0 ≤ rn < 1, f(rn) = n(n + 1),
n = 0, 1, 2, . . . . This suggests the following theorem.

Theorem 3. If

f(z) =

∞
∑

n=1

bnz
n
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is a power series such that

(i) bn > 0 for n = 1, 2, . . . .
(ii) 0 ≤ sn < R < ∞, n = 0, 1, 2, . . . , where R is the radius of convergence

and sn = bn/bn+1, and
(iii) b1 = 1, b2 = 2, and f(sn) = n(n+ 1),

then

f(z) =
z

(1− z)2
for all |z| < 1.

Proof. It is clear that

f(z) =
z

(1 − z)2

satisfies (i)–(iii). We now prove that

z

(1− z)2

is the only such function. This is clearly true if z = 0. Suppose now that z 6= 0.
Let

P (z) =
f(z)

z
.

Then

P (z) =

∞
∑

n=0

bn+1z
n

with the same sequence {sn} associated. Using b1 = 1 and b2 = 2 we can write

P (z) = 1 + 2z +

∞
∑

n=2

bn+1z
n.
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Letting an = bn+1, n = 0, 1, 2, . . . we have

P (z) = 1 + 2z +
∞
∑

n=2

anz
n

with the sequence

{rn} =

{

an−1

an

}

associated. However, P (rn) = P (sn) for n = 0, 1, 2, . . . . Then

P (z) =

∞
∑

n=0

anz
n with an > 0 for n = 0, 1, 2, . . . ,

0 < rn =
an−1

an
=

bn
bn+1

= sn < ∞, a1 = 2, and

P (rn) = P (sn) =
f(sn)

sn
.

Next, we show by induction that sn = n/n + 1. From the representation of P (z)
above, s1 = 1/2. Suppose then that sn = n/n + 1. We shall show that sn+1 =
(n+ 1)/(n+ 2). Now s1s2 . . . sn = 1/bn+1. Thus,

bn+2 =
1

s1s2 . . . snsn+1
=

1
1
2
2
3 · · ·

n
n+1sn+1

.

Therefore,

bn+2 =
n+ 1

sn+1
or sn+1 =

n+ 1

bn+2
=

bn+1

bn+2

which implies that bn+1 = n+ 1 and consequently sn+1 = (n+ 1)/(n+ 2).



VOLUME 15, NUMBER 2, SPRING 2003 115

As a result we get

P (rn) =
n(n+ 1)

n
n+1

= (n+ 1)2

for n = 0, 1, 2, . . . . Thus, by Theorem 1 (with α = 1) it follows that

P (z) =
1

(1− z)2.

Consequently,

f(z) =
z

(1 − z)2

and the proof of Theorem 3 is complete.

3. Characterization of f(z) = (1+ z)/(1− z)2. To find such a characteri-
zation we will use the following.

Lemma. The function

f(x) =

(

x

x− 1

)2x−1

is a decreasing function on [2,∞).

Proof. log f(x) = (2x− 1)[log x− log(x− 1)] implies

f
′

(x)

f(x)
= 2 log

x

x− 1
−

2x− 1

x(x− 1)

and it suffices to show that

log
x

x− 1
≤

2x− 1

2x(x− 1)
.
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But this follows easily using the derivative of

log
x

x− 1
−

2x− 1

2x(x− 1)

and the proof of the lemma is complete.

Next consider the power series

f(x) = 1 + 3x+ 5x2 + · · · =
∞
∑

n=0

(2n+ 1)xn =
1 + x

(1− x)2
, −1 < x < 1.

Here r0 = 0 and rn = (2n − 1)/(2n + 1) for n = 1, 2, . . . . Since 0 ≤ rn < 1 for
n = 0, 1, 2, . . . , f(r0) = 1, and f(rn) = n(2n+ 1), n = 1, 2, . . . . This suggests the
following theorem.

Theorem 4. If

f(z) =

∞
∑

n=0

anz
n

is a power series such that

(i) an > 0 for n = 0, 1, 2, . . .
(ii) 0 < rn < R < ∞, n = 0, 1, 2, . . . , where R is the radius of convergence

and rn = an−1/an, and
(iii) a0 = 1, a1 = 3, and f(rn) = n(2n+ 1), n = 1, 2, . . .

then

f(z) =
1 + z

(1− z)2
for all |z| < 1.

Proof. Clearly

1 + z

(1− z)2

satisfies (i)–(iii). We now prove that

1 + z

(1− z)2
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is the only such function. Using a0 = 1 and a1 = 3 we can write

f(z) = 1 + 3z +

∞
∑

n=2

anz
n

with the sequence

{rn} =

{

an−1

an

}

associated. Now f(r1) = 3. Since r1 = 1/3, we have 3 = f(1/3). The positivity
of {an} implies f is increasing on [0, R). By (iii), {f(rn)} is increasing. So {rn} is
increasing. Thus, r1 ≤ rn < R or

1

3
≤ rn < R for n = 1, 2, . . . .

Consequently,
lim
n→∞

rn = R.

Let

β = inf
n≥1

2n+ 1

2n− 1
rn and δ = sup

n≥1

2n+ 1

2n− 1
rn.

Clearly

1

3
≤ β ≤ R ≤ δ ≤ 3R.

Moreover,

2n+ 1

δ
rn ≤ 2n− 1 ≤

2n+ 1

β
rn, for n = 1, 2, . . . .

In particular (n = 1) we see that β ≤ 1 and δ ≥ 1. Let r be a number such that
0 < r < β. We shall show by induction that

f (n)(r) ≤
(2n+ 1 + β

r
) · · · (5 + β

r
)(3 + β

r
)

2n(β − r)n
f(r), for n = 1, 2, . . . .



118 MISSOURI JOURNAL OF MATHEMATICAL SCIENCES

First

f
′

(r) =

∞
∑

n=1

nanr
n−1 =

1

2

∞
∑

n=1

2nanr
n−1 =

1

2

∞
∑

n=1

(2n− 1)anr
n−1 +

1

2

∞
∑

n=1

anr
n−1

≤
1

2β

∞
∑

n=1

(2n+ 1)an−1r
n−1 +

1

2

f(r)

r
=

1

2β

∞
∑

n=0

(2n+ 3)anr
n +

1

2

f(r)

r

=
1

β

∞
∑

n=0

nanr
n + (

3

2β
+

1

2r
)f(r) =

r

β
f

′

(r) + (
3

2β
+

1

2r
)f(r).

Thus,

f
′

(r) ≤
1

2

3 + β

r

β − r
f(r). (1)

Assume the induction hypothesis that

f (k−1)(r) =
∞
∑

n=k−1

n(n− 1) · · · (n− k + 2)anr
n−k+1

≤
(2k − 1 + β

r
) · · · (5 + β

r
)(3 + β

r
)

2k−1(β − r)k−1
f(r)
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for some integer k ≥ 2. Then

f (k)(r) =

∞
∑

n=k

n(n− 1) · · · (n− k + 1)anr
n−k

=

∞
∑

n=1

(n+ k − 1)(n+ k − 2) · · ·nan+k−1r
n−1

=
1

2

∞
∑

n=1

(2n+ 2k − 2)(n+ k − 2) · · ·nan+k−1r
n−1

=
1

2

∞
∑

n=1

n · · · (n+ k − 2)[2(n+ k − 1)− 1]an+k−1r
n−1

+
1

2

∞
∑

n=1

n · · · (n+ k − 2)an+k−1r
n−1

≤
1

2β

∞
∑

n=1

n · · · (n+ k − 2)[2(n+ k − 1) + 1]an+k−2r
n−1

+
1

2

∞
∑

n=1

n · · · (n+ k − 2)an+k−1r
n−1



120 MISSOURI JOURNAL OF MATHEMATICAL SCIENCES

=
1

β

∞
∑

n=1

n · · · (n+ k − 2)

[

(n+ k − 1) +
1

2

]

an+k−2r
n−1

+
1

2

∞
∑

n=1

n · · · (n+ k − 2)an+k−1r
n−1

≤
1

β

∞
∑

n=1

n · · · (n+ k − 2)nan+k−2r
n−1

+

(

k −
1

2

)

1

β

∞
∑

n=1

n · · · (n+ k − 2)an+k−2r
n−1 +

1

2

f (k−1)(r)

r

=
1

β

∞
∑

n=2

(n− 1)n · · · (n+ k − 2)an+k−2r
n−1

+

(

k +
1

2

)

1

β

∞
∑

n=1

n · · · (n+ k − 2)an+k−2r
n−1 +

1

2

f (k−1)(r)

r

=
1

β

∞
∑

n=1

n · · · (n+ k − 1)an+k−1r
n +

(

k +
1

2

)

1

β
f (k−1)(r) +

1

2

f (k−1)(r)

r

=
r

β
f (k)(r) +

(

k +
1

2

)

1

β
f (k−1)(r) +

1

2
f (k−1)(r)r

β − r

β
f (k)(r) ≤

(

k +
1

2

)

1

β
fk−1(r) +

1

2

fk−1(r)

r
.

Thus,

f (k)(r) ≤
1

2

2k + 1

β − r
f (k−1)(r) +

1

2

β

r

1

β − r
f (k−1)(r)

=
1

2(β − r)

[

2k + 1 +
β

r

]

f (k−1)(r).
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Consequently,

f (k)(r) ≤
1

2k
(2k + 1 + β

r
)(2k − 1 + β

r
) · · · (5 + β

r
)(3 + β

r
)

(β − r)k
f(r)

which completes the induction proof.

We now use inequality (1), Taylor’s Theorem, and the binomial series to obtain
for 0 < c ≤ r < β

f(r) =

∞
∑

n=0

f (n)(c)

n!
(r − c)n

≤ f(c)

∞
∑

n=0

(2n+ 1 + β

r
) · · · (5 + β

r
)(3 + β

r
)

2nn!(β − c)n
(r − c)n

≤ f(c)

[

1 +

∞
∑

n=1

(2n+ 1 + β
r
) · · · (5 + β

r
)(3 + β

r
)

2nn!

(

r − c

β − c

)n]

= f(c)

(

β − c

β − r

)

3+
β
r

2

.

Next, let s be a number such that 0 ≤ s < β. We shall show that

f (n)(s) ≥
(2n+ 1) · · · 5 · 3

2n(δ − s)n
f(s) for n = 1, 2, . . . .

Now,

f
′

(s) =

∞
∑

n=1

nans
n−1 =

1

2

∞
∑

n=1

2nans
n−1

≥
1

2

∞
∑

n=1

(2n− 1)ans
n−1 ≥

1

2δ

∞
∑

n=1

(2n+ 1)an−1s
n−1

=
1

2δ

∞
∑

n=0

(2n+ 3)ans
n =

s

δ
f

′

(s) +
3

2δ
f(s).
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Thus,

f
′

(s) ≥
3

2(δ − s)
f(s). (2)

Assume the induction hypothesis that

f (k−1)(s) =

∞
∑

n=k−1

n(n− 1) · · · (n− k + 2)anr
n−k+1

≥
(2k − 1) · · · 5 · 3

2k−1(δ − s)k−1
f(s)

for some integer k ≥ 2. Then,

f (k)(s) =
∞
∑

n=k

n(n− 1) · · · (n− k + 1)ans
n−k

=

∞
∑

n=1

(n+ k − 1)(n+ k − 2) · · ·nan+k−1s
n−1

=
1

2

∞
∑

n=1

(2n+ 2k − 2)(n+ k − 2) · · ·nan+k−1s
n−1

≥
1

2

∞
∑

n=1

n · · · (n+ k − 2)[2(n+ k − 1)− 1]an+k−1s
n−1

≥
1

2δ

∞
∑

n=1

n · · · (n+ k − 2)(2n+ 2k − 1)an+k−2s
n−1

=
1

2δ

∞
∑

n=0

(n+ 1) · · · (n+ k − 1)(n+ 2k + 1)an+k−1s
n
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=
s

δ

∞
∑

n=1

n(n+ 1) · · · (n+ k − 1)an+k−1s
n−1

+
2k + 1

2δ

∞
∑

n=0

(n+ k − 1) · · · (n+ 2)(n+ 1)an+k−1s
n

=
s

δ
f (k)(s) +

2k + 1

2δ
f (k−1)(s).

Thus,

f (k)(s) ≥
1

2

2k + 1

δ − s
fk−1(s)

and therefore (using the induction hypothesis)

f (k)(s) ≥
(2k + 1) · · · 5 · 3

2k(δ − s)k
f(s)

which completes the induction proof.

Similarly we use inequality (2), Taylor’s Theorem, and the binomial series to
obtain for 0 ≤ c ≤ s < β < δ,

f(s) ≥ f(c)

[

1 +

∞
∑

n=1

(2n+ 1) · · · 5 · 3

2nn!

(

s− c

δ − c

)n]

= f(c)

[

δ − c

δ − s

]
3
2

.

Case 1. (β is achieved). There exists m ≥ 1 such that

β =
2m+ 1

2m− 1
rm.
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We shall show that β = 1. If m = 1 there is nothing to prove. Assume m ≥ 2. Now
β > rm and we can use c = rm−1 and r = rm to get

[

β − rm−1

β − rm

]

3+
β

rm
2

≥
f(rm)

f(rm−1)
.

But,

β

rm
=

2m+ 1

2m− 1
.

Therefore,

[

β − rm−1

β − rm

]4m−1

≥

[

m(2m+ 1)

(m− 1)(2m− 1)

]2m−1

.

Now using the lemma we have

(

m

m− 1

)2m−1

≥

(

m+ 1
2

m− 1
2

)2m

.

Thus,

[

β − rm−1

β − rm

]4m−1

≥

[

2m+ 1

2m− 1

]2m[

2m+ 1

2m− 1

]2m−1

=

[

2m+ 1

2m− 1

]4m−1

and consequently,

β − rm−1

β − rm
≥

2m+ 1

2m− 1
.

So

β − rm−1 ≥
2m+ 1

2m− 1
β − β.
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It follows that

β ≥
2m− 1

2m− 3
β.

Since m− 1 ≥ 1,

β ≤
2m− 1

2m− 3
rm−1.

Therefore,

β =
2m− 1

2m− 3
rm−1.

Proceeding as above it follows that β = 1.
Now by the definition of β we have

1

rn
≤

2n+ 1

2n− 1
for n = 1, 2, . . . .

But,

an =
1

r1r2...rn

and hence, an ≤ 2n+ 1. Thus,

3 = f

(

1

3

)

=

∞
∑

n=0

an

(

1

3

)n

≤

∞
∑

n=0

(2n+ 1)

(

1

3

)n

= 3

and so an = 2n+ 1. Consequently,

f(z) =
1 + z

(1− z)2
for all |z| < 1

in this case.
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Case 2. (β and δ are not achieved). Here for every n = 1, 2, . . .

β <
2n+ 1

2n− 1
rn < δ

Since β is an infimum, a subsequence of

{

2n+ 1

2n− 1
rn

}

must converge to β. But as the subsequence itself is convergent we must have

lim
n→∞

2n+ 1

2n− 1
rn = β.

Then
lim
n→∞

rn = β.

So β = R. Since δ is a supremum, we must also have

lim
n→∞

rn = δ.

Thus, β = R = δ and using the definitions of β and δ we have

2n+ 1

2n− 1
rn = R

for all n = 1, 2, . . . . That is, this case cannot occur.

Case 3. (β is not achieved but δ is). Here for every n = 1, 2, . . . we have

β <
2n+ 1

2n− 1
rn
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and there is an integer m ≥ 1 such that

δ =
2m+ 1

2m− 1
rm.

If m = 1, there is nothing to prove. Assume m ≥ 2. As in Case 2,

lim
n→∞

2n+ 1

2n− 1
rn = β

so that β = R. In particular, rn < β < δ for n = 0, 1, . . . and we can use c = rm−1

and s = rm to get

(

δ − rm−1

δ − rm

)3

≤

[

m(2m+ 1)

(m− 1)(2m− 1)

]2

.

But

m

m− 1
≤

(

2m+ 1

2m− 1

)2

.

So

δ − rm−1

δ − rm
≤

2m+ 1

2m− 1

and the result follows as in Case 1.

4. Counterexamples. Here is a counterexample for problem 1.

Let

f(r) =
∞
∑

n=0

1

en(n+ 1)2
rn

and let

g(r) =

∞
∑

n=0

en

(n+ 1)2
rn.
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Clearly,

rn = e

(

1 +
1

n

)2

and sn =
1

e

(

1 +
1

n

)2

for n ≥ 1.

Now

f(rk) = 1 +

∞
∑

n=1

1

(n+ 1)2

[(

1 +
1

k

)n]2

= g(sk) for k ≥ 1.

Moreover, since r0 = 0 and s0 = 0, it follows that f(r0) = 1 = g(s0) and therefore
f(rk) = g(sk) for k ≥ 0. However, f 6≡ g.

Here is a counterexample for Problem 2.
Let

f(z) =

∞
∑

n=0

anz
n

be an entire function such that

(i) an < 0 for n = 0, 1, 2, . . .
(ii) a1 = −1 and f(rn) = en for n = 0, 1, 2, . . .

and put g(z) = −f(z). Then clearly g(z) satisfies all the hypothesis of Theorem 2
and thus, g(z) = ez for all z. Consequently, f(z) = −ez for all z.

This shows that the condition an > 0 for n = 0, 1, 2, . . . cannot be relaxed to
the condition an 6= 0 for n = 0, 1, 2, . . . .
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