CHARACTERIZATIONS OF ARITHMETICAL PROGRESSION SERIES WITH SOME COUNTEREXAMPLES ON INTERPOLATION

Badih Ghusayni

Abstract. Characterizations of the functions

$$
f(z)=\frac{z}{(1-z)^{2}} \text { and } f(z)=\frac{1+z}{(1-z)^{2}}
$$

are given. We also give counterexamples to show that some generalized problems on interpolation do not hold.

1. Introduction. Suppose that

$$
f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}
$$

is a power series with positive coefficients and positive radius of convergence. Associate $a_{-1}=0, r_{n}=a_{n-1} / a_{n}$ for $n=0,1,2, \ldots$ It is known [3] that if

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{a_{n+1}}=R
$$

then the radius of convergence of

$$
\sum_{n=1}^{\infty} a_{n} z^{n}
$$

is R and also [2] if

$$
\liminf _{n \rightarrow \infty} \frac{\log \left(\frac{a_{n}}{a_{n}+1}\right)}{\log n}=L>0
$$

then

$$
\sum_{n=0}^{\infty} a_{n} z^{n}
$$

is an entire function of order $\leq 1 / L$. In addition, if

$$
\lim _{n \rightarrow \infty} \frac{\log \left(\frac{a_{n}}{a_{n+1}}\right)}{\log n}=L>0,
$$

then

$$
\sum_{n=0}^{\infty} a_{n} z^{n}
$$

is of order $1 / L$.
In his paper [1], Abi-Khuzam used the term "normalize" as follows. If $g(z)=f(c z)$ with c a positive constant, then $g(z)$ will have positive coefficients $\left\{b_{n}\right\}$ and if $s_{n}=b_{n-1} / b_{n}$, then $g\left(s_{n}\right)=f\left(r_{n}\right), n=0,1,2, \ldots$ Thus, one can normalize the function $f(z)$ to make a_{1} equal to a given number without changing the sequence $\left\{f\left(r_{n}\right)\right\}$ and such a normalization was incorporated in [1] where the following theorems were proven.

Theorem 1 [1]. If

$$
f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}
$$

is a power series such that
(i) $a_{n}>0$ for $n=0,1,2, \ldots$,
(ii) $0<r_{n}<R<\infty$, where R is the radius of convergence, and
(iii) there exists a positive real number α such that $a_{1}=\alpha+1$ and

$$
f\left(r_{n}\right)=\left(\frac{n+\alpha}{\alpha}\right)^{\alpha+1} \text { for } n=0,1,2, \ldots
$$

then

$$
f(z)=(1-z)^{-\alpha-1} \text { for all }|z|<1
$$

Theorem 2 [1]. If

$$
f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}
$$

is an entire function such that
(i) $a_{n}>0$ for $n=0,1,2, \ldots$, and
(ii) $a_{1}=1$ and $f\left(r_{n}\right)=e^{n}$ for $n=0,1,2, \ldots$,
then

$$
f(z)=e^{z} \text { for all } z
$$

In concluding an interesting paper, Abi-Khuzam [1] raised the following questions.

Problem 1. If

$$
f(r)=\sum_{n=0}^{\infty} a_{n} r^{n}, \quad g(r)=\sum_{n=0}^{\infty} b_{n} r^{n}
$$

$r_{n}=a_{n-1} / a_{n}, s_{n}=b_{n-1} / b_{n}$, and $f\left(r_{n}\right)=g\left(s_{n}\right)$ for all $n \geq 0$, does it follow that modulo normalization $f=g$?

Problem 2. Since the hypothesis of Theorem 2 holds for functions with positive and negative coefficients e.g., $f(z)=e^{-z}$, one may ask whether it holds true under the assumption $a_{n} \neq 0$, instead of $a_{n}>0$.

In this paper we will find characterizations of a type similar to Theorems 1 and 2 and also solve Problems 1 and 2.

1. Characterization of $\mathbf{f}(\mathbf{z})=\mathbf{z} /(\mathbf{1}-\mathbf{z})^{\mathbf{2}}$. Consider the power series

$$
f(x)=x+2 x^{2}+3 x^{3}+\cdots=\sum_{n=1}^{\infty} n x^{n}=\frac{x}{(1-x)^{2}}, \quad-1<x<1
$$

Here $r_{n}=n / n+1$ for $n=0,1,2, \ldots$ Since $0 \leq r_{n}<1, f\left(r_{n}\right)=n(n+1)$, $n=0,1,2, \ldots$ This suggests the following theorem.

Theorem 3. If

$$
f(z)=\sum_{n=1}^{\infty} b_{n} z^{n}
$$

is a power series such that
(i) $b_{n}>0$ for $n=1,2, \ldots$.
(ii) $0 \leq s_{n}<R<\infty, n=0,1,2, \ldots$, where R is the radius of convergence and $s_{n}=b_{n} / b_{n+1}$, and
(iii) $b_{1}=1, b_{2}=2$, and $f\left(s_{n}\right)=n(n+1)$,
then

$$
f(z)=\frac{z}{(1-z)^{2}} \text { for all }|z|<1
$$

Proof. It is clear that

$$
f(z)=\frac{z}{(1-z)^{2}}
$$

satisfies (i)-(iii). We now prove that

$$
\frac{z}{(1-z)^{2}}
$$

is the only such function. This is clearly true if $z=0$. Suppose now that $z \neq 0$. Let

$$
P(z)=\frac{f(z)}{z}
$$

Then

$$
P(z)=\sum_{n=0}^{\infty} b_{n+1} z^{n}
$$

with the same sequence $\left\{s_{n}\right\}$ associated. Using $b_{1}=1$ and $b_{2}=2$ we can write

$$
P(z)=1+2 z+\sum_{n=2}^{\infty} b_{n+1} z^{n}
$$

Letting $a_{n}=b_{n+1}, n=0,1,2, \ldots$ we have

$$
P(z)=1+2 z+\sum_{n=2}^{\infty} a_{n} z^{n}
$$

with the sequence

$$
\left\{r_{n}\right\}=\left\{\frac{a_{n-1}}{a_{n}}\right\}
$$

associated. However, $P\left(r_{n}\right)=P\left(s_{n}\right)$ for $n=0,1,2, \ldots$ Then

$$
\begin{aligned}
& P(z)=\sum_{n=0}^{\infty} a_{n} z^{n} \text { with } a_{n}>0 \text { for } n=0,1,2, \ldots \\
& 0<r_{n}=\frac{a_{n-1}}{a_{n}}=\frac{b_{n}}{b_{n+1}}=s_{n}<\infty, \quad a_{1}=2, \text { and } \\
& P\left(r_{n}\right)=P\left(s_{n}\right)=\frac{f\left(s_{n}\right)}{s_{n}}
\end{aligned}
$$

Next, we show by induction that $s_{n}=n / n+1$. From the representation of $P(z)$ above, $s_{1}=1 / 2$. Suppose then that $s_{n}=n / n+1$. We shall show that $s_{n+1}=$ $(n+1) /(n+2)$. Now $s_{1} s_{2} \ldots s_{n}=1 / b_{n+1}$. Thus,

$$
b_{n+2}=\frac{1}{s_{1} s_{2} \ldots s_{n} s_{n+1}}=\frac{1}{\frac{1}{2} \frac{2}{3} \cdots \frac{n}{n+1} s_{n+1}}
$$

Therefore,

$$
b_{n+2}=\frac{n+1}{s_{n+1}} \text { or } s_{n+1}=\frac{n+1}{b_{n+2}}=\frac{b_{n+1}}{b_{n+2}}
$$

which implies that $b_{n+1}=n+1$ and consequently $s_{n+1}=(n+1) /(n+2)$.

As a result we get

$$
P\left(r_{n}\right)=\frac{n(n+1)}{\frac{n}{n+1}}=(n+1)^{2}
$$

for $n=0,1,2, \ldots$ Thus, by Theorem 1 (with $\alpha=1$) it follows that

$$
P(z)=\frac{1}{(1-z)^{2}}
$$

Consequently,

$$
f(z)=\frac{z}{(1-z)^{2}}
$$

and the proof of Theorem 3 is complete.
3. Characterization of $\mathbf{f}(\mathbf{z})=(\mathbf{1}+\mathbf{z}) /(\mathbf{1}-\mathbf{z})^{\mathbf{2}}$. To find such a characterization we will use the following.

Lemma. The function

$$
f(x)=\left(\frac{x}{x-1}\right)^{2 x-1}
$$

is a decreasing function on $[2, \infty)$.
Proof. $\log f(x)=(2 x-1)[\log x-\log (x-1)]$ implies

$$
\frac{f^{\prime}(x)}{f(x)}=2 \log \frac{x}{x-1}-\frac{2 x-1}{x(x-1)}
$$

and it suffices to show that

$$
\log \frac{x}{x-1} \leq \frac{2 x-1}{2 x(x-1)}
$$

But this follows easily using the derivative of

$$
\log \frac{x}{x-1}-\frac{2 x-1}{2 x(x-1)}
$$

and the proof of the lemma is complete.
Next consider the power series

$$
f(x)=1+3 x+5 x^{2}+\cdots=\sum_{n=0}^{\infty}(2 n+1) x^{n}=\frac{1+x}{(1-x)^{2}}, \quad-1<x<1
$$

Here $r_{0}=0$ and $r_{n}=(2 n-1) /(2 n+1)$ for $n=1,2, \ldots$ Since $0 \leq r_{n}<1$ for $n=0,1,2, \ldots, f\left(r_{0}\right)=1$, and $f\left(r_{n}\right)=n(2 n+1), n=1,2, \ldots$ This suggests the following theorem.

Theorem 4. If

$$
f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}
$$

is a power series such that
(i) $a_{n}>0$ for $n=0,1,2, \ldots$
(ii) $0<r_{n}<R<\infty, n=0,1,2, \ldots$, where R is the radius of convergence and $r_{n}=a_{n-1} / a_{n}$, and
(iii) $a_{0}=1, a_{1}=3$, and $f\left(r_{n}\right)=n(2 n+1), n=1,2, \ldots$
then

$$
f(z)=\frac{1+z}{(1-z)^{2}} \text { for all }|z|<1
$$

Proof. Clearly

$$
\frac{1+z}{(1-z)^{2}}
$$

satisfies (i)-(iii). We now prove that

$$
\frac{1+z}{(1-z)^{2}}
$$

is the only such function. Using $a_{0}=1$ and $a_{1}=3$ we can write

$$
f(z)=1+3 z+\sum_{n=2}^{\infty} a_{n} z^{n}
$$

with the sequence

$$
\left\{r_{n}\right\}=\left\{\frac{a_{n-1}}{a_{n}}\right\}
$$

associated. Now $f\left(r_{1}\right)=3$. Since $r_{1}=1 / 3$, we have $3=f(1 / 3)$. The positivity of $\left\{a_{n}\right\}$ implies f is increasing on $[0, R)$. By (iii), $\left\{f\left(r_{n}\right)\right\}$ is increasing. So $\left\{r_{n}\right\}$ is increasing. Thus, $r_{1} \leq r_{n}<R$ or

$$
\frac{1}{3} \leq r_{n}<R \text { for } n=1,2, \ldots
$$

Consequently,

$$
\lim _{n \rightarrow \infty} r_{n}=R
$$

Let

$$
\beta=\inf _{n \geq 1} \frac{2 n+1}{2 n-1} r_{n} \text { and } \delta=\sup _{n \geq 1} \frac{2 n+1}{2 n-1} r_{n} .
$$

Clearly

$$
\frac{1}{3} \leq \beta \leq R \leq \delta \leq 3 R
$$

Moreover,

$$
\frac{2 n+1}{\delta} r_{n} \leq 2 n-1 \leq \frac{2 n+1}{\beta} r_{n}, \text { for } n=1,2, \ldots
$$

In particular $(n=1)$ we see that $\beta \leq 1$ and $\delta \geq 1$. Let r be a number such that $0<r<\beta$. We shall show by induction that

$$
f^{(n)}(r) \leq \frac{\left(2 n+1+\frac{\beta}{r}\right) \cdots\left(5+\frac{\beta}{r}\right)\left(3+\frac{\beta}{r}\right)}{2^{n}(\beta-r)^{n}} f(r), \text { for } n=1,2, \ldots
$$

First

$$
\begin{aligned}
f^{\prime}(r) & =\sum_{n=1}^{\infty} n a_{n} r^{n-1}=\frac{1}{2} \sum_{n=1}^{\infty} 2 n a_{n} r^{n-1}=\frac{1}{2} \sum_{n=1}^{\infty}(2 n-1) a_{n} r^{n-1}+\frac{1}{2} \sum_{n=1}^{\infty} a_{n} r^{n-1} \\
& \leq \frac{1}{2 \beta} \sum_{n=1}^{\infty}(2 n+1) a_{n-1} r^{n-1}+\frac{1}{2} \frac{f(r)}{r}=\frac{1}{2 \beta} \sum_{n=0}^{\infty}(2 n+3) a_{n} r^{n}+\frac{1}{2} \frac{f(r)}{r} \\
& =\frac{1}{\beta} \sum_{n=0}^{\infty} n a_{n} r^{n}+\left(\frac{3}{2 \beta}+\frac{1}{2 r}\right) f(r)=\frac{r}{\beta} f^{\prime}(r)+\left(\frac{3}{2 \beta}+\frac{1}{2 r}\right) f(r)
\end{aligned}
$$

Thus,

$$
\begin{equation*}
f^{\prime}(r) \leq \frac{1}{2} \frac{3+\frac{\beta}{r}}{\beta-r} f(r) \tag{1}
\end{equation*}
$$

Assume the induction hypothesis that

$$
\begin{aligned}
f^{(k-1)}(r) & =\sum_{n=k-1}^{\infty} n(n-1) \cdots(n-k+2) a_{n} r^{n-k+1} \\
& \leq \frac{\left(2 k-1+\frac{\beta}{r}\right) \cdots\left(5+\frac{\beta}{r}\right)\left(3+\frac{\beta}{r}\right)}{2^{k-1}(\beta-r)^{k-1}} f(r)
\end{aligned}
$$

for some integer $k \geq 2$. Then

$$
\begin{aligned}
f^{(k)}(r)= & \sum_{n=k}^{\infty} n(n-1) \cdots(n-k+1) a_{n} r^{n-k} \\
= & \sum_{n=1}^{\infty}(n+k-1)(n+k-2) \cdots n a_{n+k-1} r^{n-1} \\
= & \frac{1}{2} \sum_{n=1}^{\infty}(2 n+2 k-2)(n+k-2) \cdots n a_{n+k-1} r^{n-1} \\
= & \frac{1}{2} \sum_{n=1}^{\infty} n \cdots(n+k-2)[2(n+k-1)-1] a_{n+k-1} r^{n-1} \\
& +\frac{1}{2} \sum_{n=1}^{\infty} n \cdots(n+k-2) a_{n+k-1} r^{n-1} \\
\leq & \frac{1}{2 \beta} \sum_{n=1}^{\infty} n \cdots(n+k-2)[2(n+k-1)+1] a_{n+k-2} r^{n-1} \\
& +\frac{1}{2} \sum_{n=1}^{\infty} n \cdots(n+k-2) a_{n+k-1} r^{n-1}
\end{aligned}
$$

$$
\begin{aligned}
&= \frac{1}{\beta} \sum_{n=1}^{\infty} n \cdots(n+k-2)\left[(n+k-1)+\frac{1}{2}\right] a_{n+k-2} r^{n-1} \\
&+\frac{1}{2} \sum_{n=1}^{\infty} n \cdots(n+k-2) a_{n+k-1} r^{n-1} \\
& \leq \frac{1}{\beta} \sum_{n=1}^{\infty} n \cdots(n+k-2) n a_{n+k-2} r^{n-1} \\
&+\left(k-\frac{1}{2}\right) \frac{1}{\beta} \sum_{n=1}^{\infty} n \cdots(n+k-2) a_{n+k-2} r^{n-1}+\frac{1}{2} \frac{f^{(k-1)}(r)}{r} \\
&= \frac{1}{\beta} \sum_{n=2}^{\infty}(n-1) n \cdots(n+k-2) a_{n+k-2} r^{n-1} \\
&+\left(k+\frac{1}{2}\right) \frac{1}{\beta} \sum_{n=1}^{\infty} n \cdots(n+k-2) a_{n+k-2} r^{n-1}+\frac{1}{2} \frac{f^{(k-1)}(r)}{r} \\
&= \frac{1}{\beta} \sum_{n=1}^{\infty} n \cdots(n+k-1) a_{n+k-1} r^{n}+\left(k+\frac{1}{2}\right) \frac{1}{\beta} f^{(k-1)}(r)+\frac{1}{2} \frac{f^{(k-1)}(r)}{r} \\
&= \frac{r}{\beta} f^{(k)}(r)+\left(k+\frac{1}{2}\right) \frac{1}{\beta} f^{(k-1)}(r)+\frac{1}{2} f^{(k-1)}(r) r \\
& \frac{\beta-r}{\beta} f^{(k)}(r) \leq\left(k+\frac{1}{2}\right) \frac{1}{\beta} f^{k-1}(r)+\frac{1}{2} \frac{f^{k-1}(r)}{r} .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
f^{(k)}(r) & \leq \frac{1}{2} \frac{2 k+1}{\beta-r} f^{(k-1)}(r)+\frac{1}{2} \frac{\beta}{r} \frac{1}{\beta-r} f^{(k-1)}(r) \\
& =\frac{1}{2(\beta-r)}\left[2 k+1+\frac{\beta}{r}\right] f^{(k-1)}(r) .
\end{aligned}
$$

Consequently,

$$
f^{(k)}(r) \leq \frac{1}{2^{k}} \frac{\left(2 k+1+\frac{\beta}{r}\right)\left(2 k-1+\frac{\beta}{r}\right) \cdots\left(5+\frac{\beta}{r}\right)\left(3+\frac{\beta}{r}\right)}{(\beta-r)^{k}} f(r)
$$

which completes the induction proof.
We now use inequality (1), Taylor's Theorem, and the binomial series to obtain for $0<c \leq r<\beta$

$$
\begin{aligned}
f(r) & =\sum_{n=0}^{\infty} \frac{f^{(n)}(c)}{n!}(r-c)^{n} \\
& \leq f(c) \sum_{n=0}^{\infty} \frac{\left(2 n+1+\frac{\beta}{r}\right) \cdots\left(5+\frac{\beta}{r}\right)\left(3+\frac{\beta}{r}\right)}{2^{n} n!(\beta-c)^{n}}(r-c)^{n} \\
& \leq f(c)\left[1+\sum_{n=1}^{\infty} \frac{\left(2 n+1+\frac{\beta}{r}\right) \cdots\left(5+\frac{\beta}{r}\right)\left(3+\frac{\beta}{r}\right)}{2^{n} n!}\left(\frac{r-c}{\beta-c}\right)^{n}\right] \\
& =f(c)\left(\frac{\beta-c}{\beta-r}\right)^{\frac{3+\frac{\beta}{r}}{2}} .
\end{aligned}
$$

Next, let s be a number such that $0 \leq s<\beta$. We shall show that

$$
f^{(n)}(s) \geq \frac{(2 n+1) \cdots 5 \cdot 3}{2^{n}(\delta-s)^{n}} f(s) \text { for } n=1,2, \ldots
$$

Now,

$$
\begin{aligned}
f^{\prime}(s) & =\sum_{n=1}^{\infty} n a_{n} s^{n-1}=\frac{1}{2} \sum_{n=1}^{\infty} 2 n a_{n} s^{n-1} \\
& \geq \frac{1}{2} \sum_{n=1}^{\infty}(2 n-1) a_{n} s^{n-1} \geq \frac{1}{2 \delta} \sum_{n=1}^{\infty}(2 n+1) a_{n-1} s^{n-1} \\
& =\frac{1}{2 \delta} \sum_{n=0}^{\infty}(2 n+3) a_{n} s^{n}=\frac{s}{\delta} f^{\prime}(s)+\frac{3}{2 \delta} f(s)
\end{aligned}
$$

Thus,

$$
\begin{equation*}
f^{\prime}(s) \geq \frac{3}{2(\delta-s)} f(s) \tag{2}
\end{equation*}
$$

Assume the induction hypothesis that

$$
\begin{aligned}
f^{(k-1)}(s) & =\sum_{n=k-1}^{\infty} n(n-1) \cdots(n-k+2) a_{n} r^{n-k+1} \\
& \geq \frac{(2 k-1) \cdots 5 \cdot 3}{2^{k-1}(\delta-s)^{k-1}} f(s)
\end{aligned}
$$

for some integer $k \geq 2$. Then,

$$
\begin{aligned}
f^{(k)}(s) & =\sum_{n=k}^{\infty} n(n-1) \cdots(n-k+1) a_{n} s^{n-k} \\
& =\sum_{n=1}^{\infty}(n+k-1)(n+k-2) \cdots n a_{n+k-1} s^{n-1} \\
& =\frac{1}{2} \sum_{n=1}^{\infty}(2 n+2 k-2)(n+k-2) \cdots n a_{n+k-1} s^{n-1} \\
& \geq \frac{1}{2} \sum_{n=1}^{\infty} n \cdots(n+k-2)[2(n+k-1)-1] a_{n+k-1} s^{n-1} \\
& \geq \frac{1}{2 \delta} \sum_{n=1}^{\infty} n \cdots(n+k-2)(2 n+2 k-1) a_{n+k-2} s^{n-1} \\
& =\frac{1}{2 \delta} \sum_{n=0}^{\infty}(n+1) \cdots(n+k-1)(n+2 k+1) a_{n+k-1} s^{n}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{s}{\delta} \sum_{n=1}^{\infty} n(n+1) \cdots(n+k-1) a_{n+k-1} s^{n-1} \\
& \quad+\frac{2 k+1}{2 \delta} \sum_{n=0}^{\infty}(n+k-1) \cdots(n+2)(n+1) a_{n+k-1} s^{n} \\
& =\frac{s}{\delta} f^{(k)}(s)+\frac{2 k+1}{2 \delta} f^{(k-1)}(s) .
\end{aligned}
$$

Thus,

$$
f^{(k)}(s) \geq \frac{1}{2} \frac{2 k+1}{\delta-s} f^{k-1}(s)
$$

and therefore (using the induction hypothesis)

$$
f^{(k)}(s) \geq \frac{(2 k+1) \cdots 5 \cdot 3}{2^{k}(\delta-s)^{k}} f(s)
$$

which completes the induction proof.
Similarly we use inequality (2), Taylor's Theorem, and the binomial series to obtain for $0 \leq c \leq s<\beta<\delta$,

$$
f(s) \geq f(c)\left[1+\sum_{n=1}^{\infty} \frac{(2 n+1) \cdots 5 \cdot 3}{2^{n} n!}\left(\frac{s-c}{\delta-c}\right)^{n}\right]=f(c)\left[\frac{\delta-c}{\delta-s}\right]^{\frac{3}{2}}
$$

Case 1. (β is achieved). There exists $m \geq 1$ such that

$$
\beta=\frac{2 m+1}{2 m-1} r_{m}
$$

We shall show that $\beta=1$. If $m=1$ there is nothing to prove. Assume $m \geq 2$. Now $\beta>r_{m}$ and we can use $c=r_{m-1}$ and $r=r_{m}$ to get

$$
\left[\frac{\beta-r_{m-1}}{\beta-r_{m}}\right]^{\frac{3+\frac{\beta}{r_{m}}}{2}} \geq \frac{f\left(r_{m}\right)}{f\left(r_{m-1}\right)}
$$

But,

$$
\frac{\beta}{r_{m}}=\frac{2 m+1}{2 m-1}
$$

Therefore,

$$
\left[\frac{\beta-r_{m-1}}{\beta-r_{m}}\right]^{4 m-1} \geq\left[\frac{m(2 m+1)}{(m-1)(2 m-1)}\right]^{2 m-1}
$$

Now using the lemma we have

$$
\left(\frac{m}{m-1}\right)^{2 m-1} \geq\left(\frac{m+\frac{1}{2}}{m-\frac{1}{2}}\right)^{2 m}
$$

Thus,

$$
\left[\frac{\beta-r_{m-1}}{\beta-r_{m}}\right]^{4 m-1} \geq\left[\frac{2 m+1}{2 m-1}\right]^{2 m}\left[\frac{2 m+1}{2 m-1}\right]^{2 m-1}=\left[\frac{2 m+1}{2 m-1}\right]^{4 m-1}
$$

and consequently,

$$
\frac{\beta-r_{m-1}}{\beta-r_{m}} \geq \frac{2 m+1}{2 m-1}
$$

So

$$
\beta-r_{m-1} \geq \frac{2 m+1}{2 m-1} \beta-\beta
$$

It follows that

$$
\beta \geq \frac{2 m-1}{2 m-3} \beta
$$

Since $m-1 \geq 1$,

$$
\beta \leq \frac{2 m-1}{2 m-3} r_{m-1}
$$

Therefore,

$$
\beta=\frac{2 m-1}{2 m-3} r_{m-1}
$$

Proceeding as above it follows that $\beta=1$.
Now by the definition of β we have

$$
\frac{1}{r_{n}} \leq \frac{2 n+1}{2 n-1} \text { for } n=1,2, \ldots
$$

But,

$$
a_{n}=\frac{1}{r_{1} r_{2} \ldots r_{n}}
$$

and hence, $a_{n} \leq 2 n+1$. Thus,

$$
3=f\left(\frac{1}{3}\right)=\sum_{n=0}^{\infty} a_{n}\left(\frac{1}{3}\right)^{n} \leq \sum_{n=0}^{\infty}(2 n+1)\left(\frac{1}{3}\right)^{n}=3
$$

and so $a_{n}=2 n+1$. Consequently,

$$
f(z)=\frac{1+z}{(1-z)^{2}} \text { for all }|z|<1
$$

in this case.

Case 2. (β and δ are not achieved). Here for every $n=1,2, \ldots$

$$
\beta<\frac{2 n+1}{2 n-1} r_{n}<\delta
$$

Since β is an infimum, a subsequence of

$$
\left\{\frac{2 n+1}{2 n-1} r_{n}\right\}
$$

must converge to β. But as the subsequence itself is convergent we must have

$$
\lim _{n \rightarrow \infty} \frac{2 n+1}{2 n-1} r_{n}=\beta
$$

Then

$$
\lim _{n \rightarrow \infty} r_{n}=\beta
$$

So $\beta=R$. Since δ is a supremum, we must also have

$$
\lim _{n \rightarrow \infty} r_{n}=\delta
$$

Thus, $\beta=R=\delta$ and using the definitions of β and δ we have

$$
\frac{2 n+1}{2 n-1} r_{n}=R
$$

for all $n=1,2, \ldots$ That is, this case cannot occur.
Case 3. (β is not achieved but δ is). Here for every $n=1,2, \ldots$ we have

$$
\beta<\frac{2 n+1}{2 n-1} r_{n}
$$

and there is an integer $m \geq 1$ such that

$$
\delta=\frac{2 m+1}{2 m-1} r_{m} .
$$

If $m=1$, there is nothing to prove. Assume $m \geq 2$. As in Case 2,

$$
\lim _{n \rightarrow \infty} \frac{2 n+1}{2 n-1} r_{n}=\beta
$$

so that $\beta=R$. In particular, $r_{n}<\beta<\delta$ for $n=0,1, \ldots$ and we can use $c=r_{m-1}$ and $s=r_{m}$ to get

$$
\left(\frac{\delta-r_{m-1}}{\delta-r_{m}}\right)^{3} \leq\left[\frac{m(2 m+1)}{(m-1)(2 m-1)}\right]^{2}
$$

But

$$
\frac{m}{m-1} \leq\left(\frac{2 m+1}{2 m-1}\right)^{2}
$$

So

$$
\frac{\delta-r_{m-1}}{\delta-r_{m}} \leq \frac{2 m+1}{2 m-1}
$$

and the result follows as in Case 1.
4. Counterexamples. Here is a counterexample for problem 1.

Let

$$
f(r)=\sum_{n=0}^{\infty} \frac{1}{e^{n}(n+1)^{2}} r^{n}
$$

and let

$$
g(r)=\sum_{n=0}^{\infty} \frac{e^{n}}{(n+1)^{2}} r^{n}
$$

Clearly,

$$
r_{n}=e\left(1+\frac{1}{n}\right)^{2} \text { and } s_{n}=\frac{1}{e}\left(1+\frac{1}{n}\right)^{2} \text { for } n \geq 1
$$

Now

$$
f\left(r_{k}\right)=1+\sum_{n=1}^{\infty} \frac{1}{(n+1)^{2}}\left[\left(1+\frac{1}{k}\right)^{n}\right]^{2}=g\left(s_{k}\right) \text { for } k \geq 1
$$

Moreover, since $r_{0}=0$ and $s_{0}=0$, it follows that $f\left(r_{0}\right)=1=g\left(s_{0}\right)$ and therefore $f\left(r_{k}\right)=g\left(s_{k}\right)$ for $k \geq 0$. However, $f \not \equiv g$.

Here is a counterexample for Problem 2.
Let

$$
f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}
$$

be an entire function such that
(i) $a_{n}<0$ for $n=0,1,2, \ldots$
(ii) $a_{1}=-1$ and $f\left(r_{n}\right)=e^{n}$ for $n=0,1,2, \ldots$
and put $g(z)=-f(z)$. Then clearly $g(z)$ satisfies all the hypothesis of Theorem 2 and thus, $g(z)=e^{z}$ for all z. Consequently, $f(z)=-e^{z}$ for all z.

This shows that the condition $a_{n}>0$ for $n=0,1,2, \ldots$ cannot be relaxed to the condition $a_{n} \neq 0$ for $n=0,1,2, \ldots$.

References

1. F. Abi-Khuzam, "Interpolation at Maximal Radii; A Characterization of the Binomial and Exponential Series," Comp. Var., 20 (1992), 229-236.
2. E. T. Copson, Theory of Functions of a Complex Variable, Oxford University Press, London, 1935.
3. E. C. Titchmarch, The Theory of Functions, 2nd ed., Oxford University Press, London, 1939.

Badih Ghusayni
Department of Mathematical Sciences
Faculty of Science-1
Lebanese University
Hadeth, Lebanon
email: bgou@ul.edu.lb

