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EQUITABLE CHROMATIC NUMBER OF COMPLETE

MULTIPARTITE GRAPHS

Dorothee Blum, Denise Torrey, and Richard Hammack

Abstract. The equitable chromatic number of a graph is the smallest integer

n for which the graph’s vertex set can be partitioned into n independent sets, each

pair of which differs in size by at most 1. We develop a formula and a linear-time

algorithm which compute the equitable chromatic number of an arbitrary complete

multipartite graph. These results yield tractable solutions of certain scheduling

problems.

1. Introduction. A coloring of a graph G is an assignment of colors

{1, 2, . . . , n} to the vertices V (G) of G with no two adjacent vertices having the

same color. A coloring of G partitions its vertices into color classes V1, V2, . . . , Vn,

where each Vi consists of the vertices that are colored with color i. An equitable col-

oring of G is a coloring of G with the additional property that −1 ≤ |Vi| − |Vj | ≤ 1

for each 1 ≤ i, j ≤ n. The equitable chromatic number of G, denoted χe(G), is the

smallest integer n for which there is an equitable coloring of G with n colors.

Given positive integers p1, p2, . . . , pk, the complete k-partite graph K(p1, p2,

. . . , pk) is the graph whose vertex set is the union P1∪P2∪· · ·∪Pk of k partite sets,

with each Pi consisting of pi vertices, and with two vertices adjacent if and only

if they belong to different partite sets. Complete k-partite graphs are also called

complete multipartite graphs.

The ability to compute the equitable chromatic number of an arbitrary com-

plete multipartite graph solves certain types of scheduling problems. Consider, for

example, the following hypothetical situation: A mathematics department offers

sections of Calculus I, Calculus II, and Calculus III. One semester 309 students

wish to take Calculus I, 230 wish to take Calculus II, and 94 want to take Calculus

III. In order to equalize the number of students that her professors must teach,

the department chair wants no two sections to differ in size by more than 1, while

the total number of sections is minimized. The required number of sections is

χe(K(309, 230, 94)).

The equitable chromatic number of a graph was introduced by Meyer [7], and

commented on in [8]. The definitive survey of the subject is by Lih [3]. Much recent

activity in this area has centered on proving the Equitable Coloring Conjecture,

which asserts χe(G) ≤ ∆(G), provided G is neither a complete graph nor an odd

cycle, and where ∆(G) is the maximum vertex degree of G [3, 4, 5, 6]. Relatively
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little work has been done on finding explicit formulas for χe. Formulas for χe(G)

are given in [2] for the cases in which G is a path, a cycle, a star, a wheel, or Kn.

The derivations of these formulas are straightforward. Our article examines what

is perhaps the simplest class of graphs for which computation of χe is nontrivial;

namely, the complete multipartite graphs.

A formula which is superficially different from ours was established indepen-

dently in a manuscript by Chen and Wu [1], and was reported in [3]; however, Chen

and Wu never published their proof. To our knowledge, this article contains the

only published proof. This work is based on the second author’s undergraduate

honors thesis [2], which was directed by the first author.

2. Results. Before stating our main result, we need several preliminary

results on integer partitions. Recall that a partition of an integer n is a sum of the

form n = m1 + m2 + · · · + mk, where 1 ≤ mi ≤ n for each 1 ≤ i ≤ k. We call

such a partition an x-partition if each mi is in the set {x, x + 1}. An x-partition

of n is typically denoted as n = ax + b(x + 1), where n is the sum of a x’s and b

(x + 1)’s. An x-partition of n is called a minimal x-partition if the number of its

addends, a+ b, is as small as possible. For example, 2 + 2 + 2 + 2 is a 2-partition

of 8, though it is not minimal, while 2 + 3 + 3 is a minimal 2-partition of 8.

Our first lemma states the conditions under which an x-partition of n exists.

In what follows, all variables are nonnegative integers.

Lemma 1. If 0 < x ≤ n, and n = px + r with 0 ≤ r < x, then there is an

x-partition of n if and only if r ≤ p.

Proof. If r ≤ p, then n = px+ r = (p− r)x + r(x + 1) is an x-partition of n.

Conversely, given an x-partition of ax+ b(x+1) of n, we have n = ax+ b(x+1) =

(a+ b)x+ b, so a+ b ≤ p and r ≤ b. Consequently, r ≤ b ≤ a+ b ≤ p.

Corollary 1. There is an x-partition of n if and only if n/(x+ 1) ≤ ⌊n/x⌋.

Proof. Using the division algorithm, write n = px + r with 0 ≤ r < x. Then

p = ⌊n/x⌋, and r = n − ⌊n/x⌋x, and n − ⌊n/x⌋x ≤ ⌊n/x⌋ by Lemma 1. The

Corollary follows immediately.

The next lemma gives conditions under which an x-partition of n is minimal.

Lemma 2. An x-partition ax+ b(x+1) of n is minimal if and only if a < x+1.

Moreover, a minimal x-partition is unique.

Proof. Regard a and b as variables, and x as fixed. Solving the linear relation

n = ax + b(x + 1) for b yields a + b = (a + n)/(x + 1). Thus, a + b is a strictly

increasing function of a, and, moreover, b decreases as a increases. Therefore,
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the x-partition n = ax + b(x + 1) will be minimal exactly when a is the smallest

nonnegative integer for which (a + n)/(x + 1) is an integer. Once a is fixed, b is

determined by the equation n = ax+ b(x+1). Uniqueness of minimal x-partitions

follows.

Now suppose n = ax+ b(x+ 1) is an x-partition, and a < x+1. By what was

said in the previous paragraph, m = (a+n)/(x+1) is an integer. If the partition is

not minimal then there are integers a′ and m′, with 0 ≤ a′ < a and 0 < m′ < m, for

which m′ = (a′+n)/(x+1). Subtracting a′+n = m′(x+1) from a+n = m(x+1)

gives a− a′ = (m−m′)(x + 1), so a > a− a′ ≥ x+ 1.

Conversely, if n = ax+ b(x+ 1) is a minimal x-partition of n, it is impossible

for a ≥ x + 1, for otherwise n = ax + b(x + 1) = (a − (x + 1))x + (b + x)(x + 1)

is an x-partition of n with a− (x + 1) + b + x = a + b − 1 addends, contradicting

minimality. Thus, a < x+ 1.

Now it is possible to describe exactly the number of addends in a minimal

x-partition.

Lemma 3. If n = ax+ b(x+ 1) is a minimal x-partition, then

a+ b =
⌊n

x

⌋

−

⌊

⌊n

x

⌋

−
n

x+ 1

⌋

,

b = n− x

(

⌊n

x

⌋

−

⌊

⌊n

x

⌋

−
n

x+ 1

⌋)

,

and a =
n− b(x+ 1)

x
.

Proof. Using the division algorithm, write n = px + r with 0 ≤ r < x, so

p−r ≥ 0 by Lemma 1. Using the division algorithm again, write p−r = q(x+1)+s

with 0 ≤ s < x+1. Now n = px+r = (p−r)x+r(x+1) = (q(x+1)+s)x+r(x+1) =

sx+(qx+r)(x+1). By Lemma 2, sx+(qx+r)(x+1) is a minimal x-partition of n,

so, by uniqueness, a = s and b = qx+r. Now, q = ⌊(p−r)/(x+1)⌋, p = ⌊n/x⌋, and

r = n−⌊n/x⌋x, so it follows that b = qx+ r = n−x(⌊n/x⌋− ⌊⌊n/x⌋−n/(x+1)⌋).

Solving n = ax + b(x + 1) for a gives a = (n − b(x + 1))/x. Finally, substituting

the expression for b into the expression for a, and adding the expressions for a and

b gives a+ b =⌊n/x⌋ − ⌊⌊n/x⌋ − n/(x+ 1)⌋.
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Let us set π(x, n) = ⌊n/x⌋ − ⌊⌊n/x⌋ − n/(x+ 1)⌋, so that the previous lemma

says a minimal x-partition of n has π(x, n) addends. It seems intuitively plausible

that, as x increases, the number of addends in a minimal x-partition of n decreases.

This is confirmed by the next lemma.

Lemma 4. If there is an x-partition of n, and a y-partition of n, and x < y,

then π(x, n) ≥ π(y, n).

Proof. We show that π(x, n) − π(y, n) ≥ 0. Using the fact that ⌊r⌋ − ⌊s⌋ ≥

⌊r − s⌋, it follows π(x, n) − π(y, n) = ⌊n/x⌋ − ⌊⌊n/x⌋ − n/(x + 1)⌋ − ⌊n/y⌋ +

⌊⌊n/y⌋−n/(y+1)⌋ ≥ ⌊n/(x+1)−n/y⌋+ ⌊⌊n/y⌋−n/(y+1)⌋. The left-hand term

is nonnegative because x < y, and the right-hand term is nonnegative by Corollary

1.

These results now combine to give a construction of a minimal equitable col-

oring of K(p1, p2, . . . , pk). Denote the partite sets of the graph K(p1, p2, . . . , pk)

as P1, P2, . . . , Pk, with |Pi| = pi. Any given color class of an equitable coloring

must lie entirely in some Pi, for otherwise two of its vertices are adjacent. Thus,

any equitable coloring partitions each Pi into color classes Vi1, Vi2, . . . , Vivi , no two

of which differ in size by more than 1. If the sizes of the color classes are in the

set {x, x + 1}, then these sizes induce x-partitions of each pi. Conversely, given a

number x and x-partitions pi = aix + bi(x + 1), of each pi, there is an equitable

coloring of K(p1, p2, . . . , pk) with color classes of sizes x and x + 1; just partition

each Pi into ai sets of size x, and bi sets of size x + 1. It follows, then, that find-

ing an equitable coloring of K(p1, p2, . . . , pk) amounts to finding a number x, and

simultaneous x-partitions of each of the numbers pi. By Corollary 1, a necessary

condition for x is that pi/(x + 1) ≤ ⌊pi/x⌋ for all 1 ≤ i ≤ k. Certainly such an x

exists, because x = 1 does the trick.

If we want the coloring to be minimal, x must be chosen with the additional

property that the total number of color classes is as small as possible. According to

Lemmas 3 and 4, it suffices to choose the largest x for which pi/(x + 1) ≤ ⌊pi/x⌋,

1 ≤ i ≤ k, and partition each Pi into π(x, pi) color classes, bi = n − x(⌊pi/x⌋ −

⌊⌊pi/x⌋ − pi/(x + 1)⌋) of size x + 1, and ai = (pi − bi(x + 1))/x of size x. This

proves the following.

Theorem 1. Denote the partite sets ofK(p1, p2, . . . , pk) as P1, P2, . . . , Pk, with

|Pi| = pi, and set x = max{x ∈ N | pi/(x+ 1) ≤ ⌊pi/x⌋, 1 ≤ i ≤ k}. Then

χe(K(p1, p2, . . . , pk)) =

k
∑

i=1

(

⌊pi
x

⌋

−

⌊

⌊pi
x

⌋

−
pi

x+ 1

⌋)

.
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Moreover, a minimal equitable coloring is obtained by partitioning each Pi into

bi = n − x(⌊pi/x⌋ − ⌊⌊pi/x⌋ − pi/(x + 1)⌋) color classes of size x + 1, and ai =

(pi − bi(x + 1))/x color classes of size x.

Theorem 1 leads immediately to an algorithm which finds a minimal equi-

table coloring of K(p1, p2, . . . , pk). The algorithm first finds the largest x for

which pi/(x + 1) ≤ ⌊pi/x⌋ for all 1 ≤ i ≤ k, then computes the sizes of the

color classes according to Theorem 1. Now, no color class can be larger than

M = min({p1, p2, . . . , pk}), so x cannot be larger than this number. The algorithm

operates by first setting x = M , then decrementing x until pi/(x+ 1) ≤ ⌊pi/x⌋ for

all 1 ≤ i ≤ k. This guarantees that x will be as stated in Theorem 1.

Algorithm 1. Find a minimal equitable coloring of K(p1, p2, . . . , pk).

begin

M := min({p1, p2, . . . , pk})

x := M + 1

success := 0

while (success = 0)

x := x− 1

success := 1

for i := 1 to k

if ( pi/(x+ 1) > ⌊ pi/x ⌋ ) success := 0

end (for)

end (while)

N := 0

for i := 1 to k

bi := pi − x

(

⌊pi
x

⌋

−

⌊

⌊pi
x

⌋

−
pi

x+ 1

⌋)

ai :=
pi − bi(x + 1)

x

N := N + ai + bi

end (for)
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The equitable chromatic number of K(p1, p2, . . . , pk) is N .

A minimal equitable coloring is obtained by partitioning the partite set Pi into

ai color classes of size x and bi color classes of size x+ 1, 1 ≤ i ≤ k.

end (Algorithm 1).

Notice that the algorithm terminates, for the while loop stops – in the worst

case – when x finally reaches the value of 1. The complexity of the algorithm is

linear in p = |V (K(p1, p2, . . . , pk))|, for, in the worst case, the while loop executes

M(2 + k) ≤ 3p steps, and the second for loop executes 3k ≤ 3p steps.
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