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TANGENT SPACES OF MINKOWSKI SPACES

Y. D. Chai and Yong-Il Kim

Abstract. Let Ko be a class of strictly convex compact bodies in R
n which

are centrally symmetric with respect to the origin o in its interior. Let U i, U ∈ Ko

for i = 1, 2, . . . . In this paper, we prove that if ∂U i = Ui converges to ∂U = U in

the Hausdorff sense as i tends to infinity, then the tangent space ToM
n(Ui) of the

Minkowski space Mn(Ui) converges to the tangent space ToM
n(U) of Mn(U).

1. Introduction and Preliminaries. To investigate Minkowski spaces we

use the metric method and the geometry of geodesics. Direction spaces and tangent

spaces are good tools for investigating the characteristics of these spaces (for Rie-

mannian manifolds X the tangent space at a point of X is evidently the Euclidean

tangent space of X). Tangent spaces of Minkowski spaces are especially good for

providing information for Minkowski surface area [7]. Thus, it is very important

and interesting to study them. Using the definition of the Minkowski angle of two

geodesic directions we define the direction spaces and the tangent spaces of the

Minkowski spaces and then we investigate some properties of Minkowski spaces in-

fluenced from the indicatrices of the spaces. The aim of this paper is to show that

for centrisymmetric strictly convex compact bodies U i and U , if Ui −→
H

U then

ToM
n(Ui) −→

H
ToM

n(U).

The n-dimensional Euclidean space En can be viewed as a space Rn, n-

dimensional real space, with Euclidean norm ‖ · ‖. To generalize the situation

we consider Rn as an n-dimensional normed space with an arbitrary norm ‖ · ‖m.

The norm ‖ · ‖m makes R
n a new metric space. This new space is usually called

the n-dimensional Minkowski space Mn with metric m, defined by

m(x, y) = ‖x− y‖m.

We know that there is a centrisymmetric convex body U that satisfies the property

m(x, y) =
2e(x, y)

e(x′, y′)
,
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where x′, y′ are points on the intersection of the boundary ∂U = U of U with the

line through the origin o which is parallel to the line passing through x and y.

Example 1. In E2 let U be the convex hull of four points (1, 0), (0, 1), (−1, 0),

(0,−1). For x ∈ E2 we define

‖x‖m =

{

‖x‖
‖x‖ , if x 6= o

0, if x = o,

where x is the point on the intersection of U with the ray passing through x ema-

nating from o. Then ‖ · ‖m defines a Minkowski metric.

We call U the indicatrix of Mn and denote by Mn(U) the n-dimensional

Minkowski space with the indicatrix U . For details see [2, 3, 5, 6, 7]. Obviously

the hypersurface U satisfies that U = {x | ‖x‖m = 1}. One can easily see that

the boundary U of any centrally symmetric closed convex body U is the indicatrix

of some Minkowski space. In this sense, we can use the term Minkowski space for

the finite dimensional normed linear space. The metric m is invariant under all

translations x′ = x+ a for any constant a ∈ Mn. Of course there is a metric on R
n

which is not Minkowski. From now on, to distinguish this from other metrics, we

denote by e the standard Euclidean metric.

Example 2. Let En be the Euclidean space with metric e. Metrize R
n with a

metric d defined as

d(x, y) =

{

e(x, y) + 1
2 , if x 6= y

0, if x = y.

Then R
n with d is not Minkowski because for a scalar α we get

d(αx, αy) = |α|e(x, y) +
1

2
6= |α|d(x, y),

so that d is not a norm on R
n. However, the unit ball Bd(x, 1) at x with the metric

d is the ball centered at x of radius 1
2 of the metric e, that is,

Bd(x, 1) = Be

(

x,
1

2

)

.
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So Bd(x, 1) is convex in the Euclidean sense. From this, we know that the Euclidean

convexity of the unit ball does not guarantee the space to be Minkowski.

A geodesic in a Minkowski space Mn is a map σ: I → Mn such that for

some real number α ≥ 0 and for every t on the interval I ⊂ E1 there exists a

neighborhood V ⊂ I such that m(σ(t1), σ(t2)) = αe(t1, t2) for all t1, t2 ∈ V . If one

can take V = I, then σ is said to be a minimizer. We know that a curve σ from a

point x to a point y in the Minkowski space Mn is a minimizer from x to y if for

any point z on the image of σ the relation

m(x, z) +m(z, y) = m(x, y)

holds. Now it is natural to define the convexity in Mn as follows. A set K in the

Minkowski space is said to be convex if for any points x, y ∈ K there is a minimizer

from x to y contained entirely in K. Since a geodesic in the Euclidean space is also

a geodesic in the Minkowski space, a convex subset of En is also a convex subset of

Mn, but not conversely unless U is assumed to be strictly convex. Here the strict

convexity means that for any points x, y ∈ U the interior points of the line segment

xy from x to y are also interior points of U . Now we have the following.

Theorem 1. Let Mn(U) be a Minkowski space with non-strict convexity U .

Then there is a geodesic which is not a straight line in En.

Proof. Because U is not strictly convex we can find a line segment xy contained

in U . We assert that oy ∪ o(−x) is a geodesic. Let z ∈ oy. Then by definition we

obtain

m(−x, z) +m(z, y) =
e(−x, z)

e(o, w)
+

e(z, y)

e(o, y)
,

where w is the point of intersection of (−x)(−y) and the line through o and parallel

to (−x)z in the hyperplane contains a triangle △(o, x, y). Because △ow(−y) is

similar to △z(−x)(−y), we get

e(−x, z)

e(o, w)
=

e(−y, z)

e(o,−y)
.
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So

m(−x, z) +m(z, y) =
e(−y, z)

e(o,−y)
+

e(z, y)

e(o, y)

=
e(−y, z) + e(z, y)

e(o, y)

= m(−x, y).

This completes the proof.

2. Main Results. Now we investigate the tangent space of the n-dimensional

Minkowski space Mn. The distortion of a map f :X → Y of metric spaces is defined

as

dis(f) = sup
x,y∈X

|dX(x, y)− dY (f(x), f(y))|,

where dX is a metric on X . An ε-mesh of a metric space X is a subset A such that

for every x ∈ X there is a ∈ A with dX(a, x) < ε. The uniform distance between

metric spaces X,Y is defined as

u(X,Y ) = inf
f

dis(f),

where the infimum is taken over all bijections f :X → Y . We say that Xi converges

uniformly to X , denoted by

Xi −→
u

X,

if u(Xi, X) → 0 as i tends to infinity. A sequence Xi of metric spaces is said to be

Hausdorff convergent to a metric space X , denoted by

Xi −→
H

X,

if for every ε > 0 there exists an ε-mesh Xε in X which is the uniform limit of

ε-meshes (Xi)ε in Xi.

Let Ko be a class of strictly convex compact bodies with nonempty interior in

R
n which are centrally symmetric with respect to o in its interior. From now on we



86 MISSOURI JOURNAL OF MATHEMATICAL SCIENCES

assume that U i, U ∈ Ko for i = 1, 2, . . . . Now we investigate properties of tangent

spaces of Minkowski spaces. From the fact that a mesh of the hypersurface U

determines a mesh of the Minkowski space Mn(U), we have the following theorem.

Theorem 2. Let Ui and U be indicatrices of Mn(Ui) and Mn(U), respectively.

If Ui −→
H

U , then Mn(Ui) −→
H

Mn(U).

Proof. Let ε > 0. Let ri(x) be a radial function of indicatrix Ui defined as

follows for x in the unit sphere Sn−1 with center o,

ri(x) = e(o, x),

where x is the point on the intersection of Ui with the ray passing through x

emanating from o. Let r(x) be a radial function of the indicatrix U . Since

Ui −→
H

U,

we can choose m satisfying

0 < m ≤ min
x∈Sn−1

{ri(x), r(x)}

for i ≥ N for sufficiently large N . If we put δ = (mε)/2, then there is a δ-mesh Uδ

in U which is the uniform limit of δ-meshes (Ui)δ in Ui. Let

N1 =
δ

2
Uδ =

{

δ

2
x | x ∈ Uδ

}

and

Nk =
k

k − 1
αk−1

{

z ∈ Mn(U) | m(x, z) +m(z, y) = m(x, y) for some x, y ∈ Nk−1

}

for k ≥ 2, where αk is the greatest lower bound of the set

{‖x‖ | x ∈ Nk}.
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In a similar way, for each Ni we get (Ni)k for k ≥ 1. Now let

(Mn(U))ε =

∞
⋃

k=1

Nk and (Mn(Ui))ε =

∞
⋃

k=1

(Ni)k.

Since U and U i are convex, (Mn(U))ε and (Mn(Ui))ε are ε-meshes of Mn(U) and

Mn(Ui), respectively. Since Xi −→
u

X if and only if αXi −→
u

αX for any scalar α,

(Mn(Ui))ε −→
u

(Mn(U))ε.

So

Mn(Ui) −→
H

Mn(U).

This completes the proof.

It should be noted that Theorem 2 says that the Euclidean space En is the

Hausdorff limit of a sequence of Minkowski spaces since the Euclidean sphere is the

Hausdorff limit of hypersurfaces which are the boundary of the centrisymmetric

convex bodies.

From now on, we assume that U is differentiable and has positive finite cur-

vature everywhere. Let σi and σj be two geodesic directions and U(σi, σj) be the

intersection of U and the hyperplane determined by σi, σj . Now we parametrize

√

π

A(U(σi, σj))
U(σi, σj),

where A(U(σi, σj)) is the area of U(σi, σj), the convex hull of U(σi, σj) in the

Minkowski plane

M2

(
√

π

A(U(σi, σj))
U(σi, σj)

)

,
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by twice its sectorial area, φ, and write the equation of

√

π

A(U(σi, σj))
U(σi, σj)

as

ζ = ζi,j(φ). (1)

We define η = ηi,j(φ) by

ηi,j(φ) =
dζi,j(φ)

dφ
.

We know that the isoperimetrix [1] I(σi, σj) of the Minkowski plane

M2

(
√

π

A(U(σi, σj))
U(σi, σj)

)

is the curve with equation

η = ηi,j(φ).

Then the function λ = λi,j(φ) defined by the equation

dηi,j(φ)

dφ
= −λ−1

i,j (φ)ζi,j(φ)

is called the Minkowski curvature of I(σi, σj) at a point where the tangent has

direction ζi,j(φ) [4]. We define the Minkowski angle ω between the two directions

σi = ζ(φi) and σj = ζ(φj), φi ≤ φj , by

ωi,j = 6 (σi, σj) =

∫ φj

φi

λ−1
i,j (φ)dφ.
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Definition 1. The direction space DxM
n at x ∈ Mn is defined as the set of

geodesics in Mn emanating from x with a metric d defined as

d(σi, σj) = 6 (σi, σj).

For three geodesics σi, σj , σk let ωi,j be the angle between two geodesics σi and

σj . Then

ωi,j ≤ ωi,k + ωk,j .

So the metric on DxM
n above is well-defined. Then we have the following.

Theorem 3. Let Ui and U be the indicatrices of Mn(Ui) and Mn(U), respec-

tively. If Ui −→
H

U , then for any point x ∈ U ∩ (
⋂∞

i=1 Ui)

DxM
n(Ui) −→

H
DxM

n(U).

Proof. Since the Minkowski metric is invariant under translations, it is suffi-

cient to prove that

DoM
n(Ui) −→

H
DoM

n(U).

Let ε > 0. Let σi, σj be two geodesic directions. We denote the Minkowski and

Euclidean element of arc of I(σi, σj) by dL and dLe, respectively. Put

m = min
i,j

{‖ζi,j(φ)‖},

where ζi,j(φ) is a parametrization of

√

π

A(U(σi, σj))
U(σi, σj)

as in (1). Then we can choose li, lj so that

ωi,j =

∫ φj

φi

λ−1(φ)dφ =

∫ lj

li

dL.
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Then we can put

∫ lj

li

dL =

∫ lj

li

dLe

r
,

where r is a radial function of

√

π

A(U(σi, σj))
U(σi, σj).

Then

∫ lj

li

dLe

r
≤

1

m

∫ lj

li

dLe. (2)

Since

Ui −→
H

U,

there is a δ-mesh, δ = (mε)/3, Uδ in U which is the uniform limit of δ-meshes (Ui)δ
in Ui. For x ∈ Uδ ∪ (Ui)δ let σx be the geodesic rays through x emanating from o.

Put

(DoM
n(U))ε =

⋃

x∈U

[σx] and (DoM
n(Ui))ε =

⋃

x∈Ui

[σx].

From [2] (DoM
n(U))ε and (DoM

n(Ui))ε are ε-meshes ofDoM
n(U) andDoM

n(Ui),

respectively. Thus,

(DoM
n(Ui))ε −→

u
(DoM

n(U))ε.

So

DoM
n(Ui) −→

H
DoM

n(U).

This completes the proof.
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Definition 2. The Euclidean cone C(X) = X × [0,∞)/X × 0 over a metric

space X has the metric defined as

d2C(X)(x, y) = s2 + t2 − 2st cos(min{dX(x, y), π}),

where x = (x, s), y = (y, t).

We have the following example of the Euclidean cone which is not Minkowski.

Example 3. Let Sn(r) be a sphere of radius r 6= 1 with length metric dSn(r).

Then the Euclidean cone C(Sn(r)) is not Minkowski.

The space C(Sn(r)) is isometric to (Rn+1, dRn+1) with a metric defined by

d2
Rn+1(x, y) = ‖x‖

2
+ ‖y‖

2
− 2‖x‖‖y‖ cos(dSn(r)(x

′, y′)),

where a′ is on the intersection Sn(r)∩−→oa of Sn(r) with the ray −→oa emanating from

o and passing through a point a. The map i:C(Sn) → R
n+1 defined by

i(x, t) = tx

is an isometry from C(Sn) to R
n+1. But

dRn+1(i(x, t), i(y, s)) = dRn+1(tx, sy)

=
√

s2 + t2 − 2st cos(dSn(r)(x, y)) = dC(Sn(r))((x, t), (y, s)),

since the angle between the rays
−−→
o(tx) and

−−−→
o(sy) is dSn(r)(x, y). We have that

C(Sn(r)) is not Minkowski, since dC(Sn(r))(x+a, y+a) 6= dC(Sn(r))(x, y) in general.

Definition 3. The tangent space TxX at a point x ∈ X is defined as the

Euclidean cone C(DxX) over the direction space DxX at x of X .

Now we have a theorem concerning the convergence of tangent spaces of

Minkowski spaces.

Theorem 4. Let Ui and U be the indicatrices of Mn(Ui) and Mn(U), respec-

tively. If Ui −→
H

U , then for any point x ∈ U ∩ (
⋂∞

i=1 Ui)

TxM
n(Ui) −→

H
TxM

n(U).
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Proof. Since the Minkowski metric is invariant under translations it is sufficient

to prove that

ToM
n(Ui) −→

H
ToM

n(U).

Let ε > 0. Choose a δ-mesh, δ = (mε)/6, where m = mini,j{‖ζi,j(φ)‖} as in

the proof of Theorem 3 and Uδ in U , the uniform limit of δ-meshes (Ui)δ in Ui.

For x ∈ Uδ ∪ (Ui)δ let σx be the geodesic rays through x emanating from o. Let

A1 =
⋃

x∈U [σx] and Ak is the set of elements [σy] ∈ DoM
n(U) such that y ∈ U and

6 (σx, σy) + 6 (σy, σz) = 6 (σx, σz) for some [σx], [σz ] ∈ Ak−1 for k ≥ 2. Similarly,

we obtain (Ai)k for k ≥ 1. Now we put

(ToM
n(U))ε =

∞
⋃

k=1

Ak ×
kε

2
and (ToM

n(Ui))ε =

∞
⋃

k=1

(Ai)k ×
kε

2
.

Without loss of generality, consider 0 < ε < 1 and sufficiently small. Then for

x = (x, t) ∈ ToM
n(U) and (kε)/2 ≤ t ≤ ((k+1)ε)/2, choose a point x′ = (x, (kε)/2)

in ToM
n(U). Then choose a point x′

ε
2
in Ak such that d(x′, x′

ε
2
) < ε

2 . Then

d(x, x′
ε
2
) ≤ d(x, x′) + d(x′, x′

ε
2
) < ε.

Thus, (ToM
n(U))ε is an ε-mesh of ToM

n(U) and similarly (ToM
n(Ui))ε is an ε-

mesh of ToM
n(Ui). Since DoM

n(U) and DoM
n(Ui) are strictly interior, that is,

every two points have a midpoint, we can choose Ak and (Ai)k so that

(ToM
n(Ui))ε −→

u
(ToM

n(U))ε.

So we have

ToM
n(Ui) −→

H
ToM

n(U).

This completes the proof.
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